Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mirror background spectrum

Fourier transformation of the interferogram affords a single channel background spectrum including the spectral characteristics of the mirrors, the globar and the detector detectivity. The IR spectrum of a sample, such as the one shown in Fig.6.6-1, is obtained by subtracting from the sample spectrum the background sample-free spectrum. [Pg.621]

The interferogram is plotted as the intensity of light (y axis) versus the mirror position (x axis) thus, the signal from the interferometer is a function of time [as the mirror is in motion at a constant velocity (Fig. 7B)]. The raw interferogram, as it is sometimes termed, is converted to a spectrum using the Fourier transform, and a spectrum is determined by ratioing a spectrum determined with a sample in the beam (as the sample spectrum) to a spectrum determined with no sample in the beam (as the background spectrum). [Pg.16]

Infrared spectra of microscopic samples can also be obtained in reflectance mode. Reflectance samples are placed on a gold or aluminum mirror, and then the infrared beam is bounced off them. The background spectrum is taken on a clean portion of the mirror because these materials are good infrared reflectors (which... [Pg.169]

Instrument Response Function The portion of a background spectrum due to the instrument. The instrument s components, such as mirrors, detector, and the beamsplitter, all contribute features to this function. [Pg.178]

Figure 14.12 —Schematic of an instrument showing deuterium lamp background correction. Perkin Elmer, model 3300 with a Littrow-type monochromator. This double beam assembly includes a deuterium lamp whose continuum spectrum is superimposed, with the aid of semitransparent mirrors, on the lines emitted by the hollow cathode lamp. One beam path goes through the flame while the other is a reference path. The instrument measures the ratio of transmitted intensities from both beams. The correction domain is limited to the spectral range of the deuterium lamp, which is from 200-350 nm. (Reproduced by permission of Perkin Elmer.)... Figure 14.12 —Schematic of an instrument showing deuterium lamp background correction. Perkin Elmer, model 3300 with a Littrow-type monochromator. This double beam assembly includes a deuterium lamp whose continuum spectrum is superimposed, with the aid of semitransparent mirrors, on the lines emitted by the hollow cathode lamp. One beam path goes through the flame while the other is a reference path. The instrument measures the ratio of transmitted intensities from both beams. The correction domain is limited to the spectral range of the deuterium lamp, which is from 200-350 nm. (Reproduced by permission of Perkin Elmer.)...
Fig. 6.8. A Principle of frequency-multiplexed CARS microspectroscopy A narrow-bandwidth pump pulse determines the inherent spectral resolution, while a broad-bandwidth Stokes pulse allows simultaneous detection over a wide range of Raman shifts. The multiplex CARS spectra shown originate from a 70 mM solution of cholesterol in CCI4 (solid line) and the nonresonant background of coverglass (dashed line) at a Raman shift centered at 2900 cm-1. B Energy level diagram for a multiplex CARS process. C Schematic of the multiplex CARS microscope (P polarizer HWP/QWP half/quarter-wave plate BC dichroic beam combiner Obj objective lens F filter A analyzer FM flip mirror L lens D detector S sample). D Measured normalized CARS spectrum of the cholesterol solution. E Maximum entropy method (MEM) phase spectrum (solid line) retrieved from (D) and the error background phase (dashed line) determined by a polynomial fit to those spectral regions without vibrational resonances. F Retrieved Raman response (solid line) calculated from the spectra shown in (E), directly reproducing the independently measured spontaneous Raman response (dashed line) of the same cholesterol sample... Fig. 6.8. A Principle of frequency-multiplexed CARS microspectroscopy A narrow-bandwidth pump pulse determines the inherent spectral resolution, while a broad-bandwidth Stokes pulse allows simultaneous detection over a wide range of Raman shifts. The multiplex CARS spectra shown originate from a 70 mM solution of cholesterol in CCI4 (solid line) and the nonresonant background of coverglass (dashed line) at a Raman shift centered at 2900 cm-1. B Energy level diagram for a multiplex CARS process. C Schematic of the multiplex CARS microscope (P polarizer HWP/QWP half/quarter-wave plate BC dichroic beam combiner Obj objective lens F filter A analyzer FM flip mirror L lens D detector S sample). D Measured normalized CARS spectrum of the cholesterol solution. E Maximum entropy method (MEM) phase spectrum (solid line) retrieved from (D) and the error background phase (dashed line) determined by a polynomial fit to those spectral regions without vibrational resonances. F Retrieved Raman response (solid line) calculated from the spectra shown in (E), directly reproducing the independently measured spontaneous Raman response (dashed line) of the same cholesterol sample...
Fig. 5. Pulsed-nozzle FT microwave measurements. A molecule-radiation interaction occurs when the gas pulse is between mirrors forming a Fabry-Perot cavity. If the transient molecule has a rotational transition of frequency vm falling within the narrow band of frequencies carried into the cavity by a short pulse (ca. 1 (is) of monochromatic radiation of frequency v, rotational excitation leads to a macroscopic electric polarization of the gas. This electric polarization decays only slowly (half-life T2 = 100 (is) compared with the relatively intense exciting pulse (half-life in the cavity t 0.1 (is). If detection is delayed until ca. 2 (is after the polarization, the exciting pulse has diminished in intensity by a factor of ca. 106 but the spontaneous coherent emission from the polarized gas is just beginning. This weak emission can then be detected in the absence of background radiation with high sensitivity. For technical reasons, the molecular emission at vm is mixed with some of the exciting radiation v and detected as a signal proportional to the amplitude of the oscillating electric vector at the beat frequency v - r , as a function of time, as in NMR spectroscopy Fourier transformation leads to the frequency spectrum [reproduced with permission from (31), p. 5631. Fig. 5. Pulsed-nozzle FT microwave measurements. A molecule-radiation interaction occurs when the gas pulse is between mirrors forming a Fabry-Perot cavity. If the transient molecule has a rotational transition of frequency vm falling within the narrow band of frequencies carried into the cavity by a short pulse (ca. 1 (is) of monochromatic radiation of frequency v, rotational excitation leads to a macroscopic electric polarization of the gas. This electric polarization decays only slowly (half-life T2 = 100 (is) compared with the relatively intense exciting pulse (half-life in the cavity t 0.1 (is). If detection is delayed until ca. 2 (is after the polarization, the exciting pulse has diminished in intensity by a factor of ca. 106 but the spontaneous coherent emission from the polarized gas is just beginning. This weak emission can then be detected in the absence of background radiation with high sensitivity. For technical reasons, the molecular emission at vm is mixed with some of the exciting radiation v and detected as a signal proportional to the amplitude of the oscillating electric vector at the beat frequency v - r , as a function of time, as in NMR spectroscopy Fourier transformation leads to the frequency spectrum [reproduced with permission from (31), p. 5631.

See other pages where Mirror background spectrum is mentioned: [Pg.242]    [Pg.242]    [Pg.1006]    [Pg.53]    [Pg.58]    [Pg.271]    [Pg.275]    [Pg.49]    [Pg.430]    [Pg.164]    [Pg.768]    [Pg.173]    [Pg.246]    [Pg.165]    [Pg.666]    [Pg.86]    [Pg.110]    [Pg.33]    [Pg.86]    [Pg.432]    [Pg.132]    [Pg.187]    [Pg.81]    [Pg.113]    [Pg.255]    [Pg.5]    [Pg.6]    [Pg.24]    [Pg.42]    [Pg.241]    [Pg.19]    [Pg.68]    [Pg.897]    [Pg.157]    [Pg.167]    [Pg.170]    [Pg.674]    [Pg.712]    [Pg.355]    [Pg.816]    [Pg.60]    [Pg.216]    [Pg.278]   
See also in sourсe #XX -- [ Pg.24 , Pg.239 ]




SEARCH



Background spectrum

Mirrored

Mirroring

Mirrors

© 2024 chempedia.info