Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

TSLS complex microporosity

The microporosity of a new tubular silicatelayered silicate nanocomposite formed by the intercalation of imogolite in Na -montmorillonite has been characterized by nitrogen and m-xylene adsorption. The nitrogen adsorption data yielded liquid micropore volume of -0.20 cm g as determined by both the t-plot and the Dubinin-Radusikevich methods. The t-plot provided evidence for a bimodal pore structure which we attributed to intratube and intertube adsorption environments. The m-xylene adsorption data indicated a much smaller liquid pore volume (-0.11 cm g ), most likely due to incomplete filling of intratubular pores by the planar adsorbate. The FTIR spectrum of pyridine adsorbed on the TSLS complex established the presence of both Bronsted and Lewis acid sites. The TSLS complex was shown to be active for the acid-catalyzed dealkylation of cumene at 350 C, but the complex was less reactive than a conventional alumina pillared montmorillonite. [Pg.119]

In the present work we examine the microporosity of a TSLS complex formed from synthetic imogolite and natural montmorillonite. Nitrogen adsorption and desorption isotherms are reported and analyzed in terms of microporous volume and surface area. Also, the adsorption isotherm for an organic adsorbate, m-xylene, is reported. Preliminary FTIR results for the chemisorption of pyridine and catalytic studies of the dealkylation of cumene suggest that TSLS complexes are promising microporous acids for shape selective chemical conversions. [Pg.120]

The regular microporosity of a TSLS complex was indicated by the fit of the N2 adsorption isotherm [12,13] to the Langmuir equation. The Langmuir... [Pg.6]


See also in sourсe #XX -- [ Pg.119 , Pg.120 , Pg.121 , Pg.122 , Pg.123 , Pg.124 , Pg.125 , Pg.126 ]




SEARCH



Microporosity

TSLS complex

© 2024 chempedia.info