Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Microhardness nanostructure

Polymer surfaces is a field of increasing interest to both basic and applied research (Eisenriegler, 1993). The aim of this section is to show that microhardness is directly related to surface free energy and, therefore, to the degree of polymer perfection at polymer surfaces and interfaces. Studies have revealed that the morphology (crystal thickness and size of the interlamellar regions) of the polymer nanostructure are the main factors determining the microhardness (Balta Calleja et al., 1997). (See also Section 4.2.3.) The hardness-derived parameter... [Pg.101]

Many techniques have been developed to measure the Young s modulus and the stress of the mesoscopic systems [12, 13]. Besides the traditional Vickers microhardness test, techniques mostly used for nanostructures are tensile test using an atomic force microscope (AFM) cantilever, a nanotensile tester, a transmission electron microscopy (TEM)-based tensile tester, an AFM nanoindenter, an AFM three-point bending tester, an AFM wire free-end displacement tester, an AFM elastic-plastic indentation tester, and a nanoindentation tester. Surface acoustic waves (SAWs), ultrasonic waves, atomic force acoustic microscopy (AFAM), and electric field-induced oscillations in AFM and in TEM are also used. Comparatively, the methods of SAWs, ultrasonic waves, field-induced oscillations, and an AFAM could minimize the artifacts because of their nondestructive nature though these techniques collect statistic information from responses of all the chemical bonds involved [14]. [Pg.443]


See other pages where Microhardness nanostructure is mentioned: [Pg.135]    [Pg.63]    [Pg.3636]    [Pg.229]    [Pg.570]    [Pg.253]   
See also in sourсe #XX -- [ Pg.570 ]




SEARCH



Microhardness

© 2024 chempedia.info