Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Micelle kinetics polydispersity

As noted in particular in the analysis of kinetic data [10-15], there are aggregates over a wide range of aggregation numbers, from dimers and well beyond the most stable micelles. However, for surfactants with not too high a c.m.c., the size distribution curve has a very deep minimum, the least stable aggregates being present in concentrations many orders of magnitude below those of the most abundant micelles. For surfactants with predominantly spherical micelles, the polydispersity is low and there is then a particularly preferred micellar size. [Pg.31]

Comparison between Experimental Results and Model Predictions. As will be shown later, the important parameter e which represents the mechanism of radical entry into the micelles and particles in the water phase does not affect the steady-state values of monomer conversion and the number of polymer particles when the first reactor is operated at comparatively shorter or longer mean residence times, while the transient kinetic behavior at the start of polymerization or the steady-state values of monomer conversion and particle number at intermediate value of mean residence time depend on the form of e. However, the form of e influences significantly the polydispersity index M /M of the polymers produced at steady state. It is, therefore, preferable to determine the form of e from the examination of the experimental values of Mw/Mn The effect of radical capture mechanism on the value of M /M can be predicted theoretically as shown in Table II, provided that the polymers produced by chain transfer reaction to monomer molecules can be neglected compared to those formed by mutual termination. Degraff and Poehlein(2) reported that experimental values of M /M were between 2 and 3, rather close to 2, as shown in Figure 2. Comparing their experimental values with the theoretical values in Table II, it seems that the radicals in the water phase are not captured in proportion to the surface area of a micelle and a particle but are captured rather in proportion to the first power of the diameters of a micelle and a particle or less than the first power. This indicates that the form of e would be Case A or Case B. In this discussion, therefore, Case A will be used as the form of e for simplicity. [Pg.130]

For small disturbances of the adsorption layer from equilibrium, Lucassen (1976) derived an analytical solution (cf Section 6.1.1). An analysis of the effect of a micellar kinetics mechanism of stepwise aggregation-disintegration and the role of polydispersity of micelles was made by Dushkin Ivanov (1991) and Dushkin et al. (1991). Although it results in analytical expressions, it is based on some restricting linearisations, for example with respect to adsorption isotherm, and therefore, it is valid only for states close to equilibrium. [Pg.126]

A more rigorous approach to the description of the colloid surfactant diffusion to the interfaee was proposed by Noskov [133]. The reduced diffusion equations for micelles and monomers, which take into account the multistep nature of micellisation and the polydispersity of micelles, were derived for time intervals corresponding to the fast and slow processes using the method applied initially by Aniansson and Wall to uniform systems. Analogous equations have been derived later by Johner and Joanny [135] and also by Dushkin et al. [137]. Recently Dushkin has studied also the adsorption kinetics in the framework of a simplified model of quasi-monodisperse micelles. In this case the assumption of the existence of two kinds of micelles permits to study the main features of the surface tension relaxation in real micellar solution [138]. The main steps of the derivation of surfactant diffusion equations in micellar solutions are presented below [133, 134]. [Pg.463]

The real breakthrough in terms of kinetic theory was published in 1973 by Aniansson and Wall [80, 81], who provided much more applicable kinetic equations for stepwise micelle formation using a polydisperse model. In a substantial paper two years later they were able to predict the first-order rate constants for the dis-sociation/association of surfactant ions to and from micelles (and hence residence times/lifetimes of surfactant monomers within micelles) [82]. They found values for the association and dissociation of surfactants into/from micelles (Ar and k , respectively) for sodium dodecyl sulfate (SDS) as 1 x 10 s and 1.2 x 10 mok s". Their kinetic model still remains essentially unchanged as a basis for the kinetics of micellar formation and breakdown. Modifications made to existing theory also allowed them to offer a significant thermodynamic explanation for the low enthalpy change upon micellization. [Pg.422]


See other pages where Micelle kinetics polydispersity is mentioned: [Pg.221]    [Pg.156]    [Pg.156]    [Pg.195]    [Pg.390]    [Pg.571]    [Pg.109]    [Pg.120]    [Pg.126]    [Pg.128]    [Pg.129]    [Pg.132]    [Pg.135]    [Pg.142]    [Pg.752]    [Pg.595]    [Pg.178]    [Pg.516]    [Pg.357]    [Pg.294]    [Pg.172]   
See also in sourсe #XX -- [ Pg.126 ]




SEARCH



Micelles kinetic

Micelles polydispersity

Micellization kinetics

Polydisperse

Polydispersed

Polydispersion

Polydispersity

Polydispersiveness

Polydispersivity

© 2024 chempedia.info