Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methylheptane, dehydrocyclization

In our calculations we will first discuss our results starting with both the 2-and 3- octyl cations (the 4- octyl cation cannot form a 1,6-p-H-structure). The n-octane conversion to aromatics, as described by Davis (8), is a good test of our proposed mechanisms, for several reasons (1) his experimental observation would require the formation of approximately equal amounts of 1,2-dimethylcyclohexane (o-xylene) and ethylcyclohexane (ethylbenzene), even though in our mechanism the structure of the needed 1,6-p-H cation intermediates are quite different, and (2) the formation of to- and p-xylene requires a prior isomerization of n-octane to 2- and 3- methylheptane, and this must be a faster reaction than the dehydrocyclization (or at least competitive with it). If our mechanisms are valid, we should be able to reproduce some aspects of the above results. [Pg.297]

As previously mentioned, Davis (8) has shown that in model dehydrocyclization reactions with a dual function catalyst and an n-octane feedstock, isomerization of the hydrocarbon to 2-and 3-methylheptane is faster than the dehydrocyclization reaction. Although competitive isomerization of an alkane feedstock is commonly observed in model studies using monofunctional (Pt) catalysts, some of the alkanes produced can be rationalized as products of the hydrogenolysis of substituted cyclopentanes, which in turn can be formed on platinum surfaces via free radical-like mechanisms. However, the 2- and 3-methylheptane isomers (out of a total of 18 possible C8Hi8 isomers) observed with dual function catalysts are those expected from the rearrangement of n-octane via carbocation intermediates. Such acid-catalyzed isomerizations are widely acknowledged to occur via a protonated cyclopropane structure (25, 28), in this case one derived from the 2-octyl cation, which can then be the precursor... [Pg.302]

We have not carried out calculations starting with secondary cations derived from the title alkanes because at a computational level, these will have ground-states and transition-states similar to heptane itself (previously discussed). This will be true even though the most stable carbocations in these branched alkanes will be the corresponding tertiary ions, which in themselves will not be directly involved in dehydrocyclization processes. However, one has to keep in mind that the thermodynamic ground-states in these real catalytic reactions will be the alkanes themselves, and in this regard secondary cations formed from n-octane or 2- (or 3-) methylheptane will not differ much in absolute energy. As shown earlier, a 1,6-closure of 2-methylheptane leads eventually to m-xylene, while 3-methylheptane has eventual routes to both o- and p-xylene. [Pg.305]

Methyl groups, as hydrocarbon surface species, vibrational spectra, 42 214—219 Methylheptane, ring closure, 25 154 3-Methylhexane dehydrocyclization, 30 13 isomerization, 30 7, 14, 39-40 Methylhexane, ring closure, 25 155 Methyl hydroperoxide, catalytic decomposition, 35 161... [Pg.143]


See other pages where Methylheptane, dehydrocyclization is mentioned: [Pg.305]    [Pg.155]    [Pg.292]   


SEARCH



2- Methylheptane

3-Methylheptan

Dehydrocyclization

© 2024 chempedia.info