Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl-tetrahydrofolate reductase

Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)... Fig. 14.1 Cellular pathway of methotrexate. ABCBl, ABCCl-4, ABC transporters ADA, adenosine deaminase ADP, adenosine diphosphate AICAR, aminoimidazole carboxamide ribonucleotide AMP, adenosine monophosphate ATIC, AICAR transformylase ATP, adenosine triphosphate SjlO-CH -THF, 5,10-methylene tetrahydrofolate 5-CHj-THF, 5-methyl tetrahydro-folate DHFR, dihydrofolate reductase dTMP, deoxythymidine monophosphate dUMP, deoxy-uridine monophosphate FAICAR, 10-formyl AICAR FH, dihydrofolate FPGS, folylpolyglutamyl synthase GGH, y-glutamyl hydrolase IMP, inosine monophosphate MTHFR, methylene tetrahydrofolate reductase MTR, methyl tetrahydrofolate reductase MTX-PG, methotrexate polyglutamate RFCl, reduced folate carrier 1 TYMS, thymidylate synthase. Italicized genes have been targets of pharmacogenetic analyses in studies published so far. (Reproduced from ref. 73 by permission of John Wiley and Sons Inc.)...
The methylation of deoxyuridine monophosphate (dUMP) to thymidine monophosphate (TMP), catalyzed by thymidylate synthase, is essential for the synthesis of DNA. The one-carbon fragment of methy-lene-tetrahydrofolate is reduced to a methyl group with release of dihydrofolate, which is then reduced back to tetrahydrofolate by dihydrofolate reductase. Thymidylate synthase and dihydrofolate reductase are especially active in tissues with a high rate of cell division. Methotrexate, an analog of 10-methyl-tetrahydrofolate, inhibits dihydrofolate reductase and has been exploited as an anticancer drug. The dihydrofolate reductases of some bacteria and parasites differ from the human enzyme inhibitors of these enzymes can be used as antibacterial drugs, eg, trimethoprim, and anti-malarial drugs, eg, pyrimethamine. [Pg.494]

Supplements of 400 Ig/d of folate begun before conception result in a significant reduction in the incidence of neural mbe defects as found in spina bifida. Elevated blood homocysteine is an associated risk factor for atherosclerosis, thrombosis, and hypertension. The condition is due to impaired abihty to form methyl-tetrahydrofolate by methylene-tetrahydrofolate reductase, causing functional folate deficiency and resulting in failure to remethylate homocysteine to methionine. People with the causative abnormal variant of methylene-tetrahydrofolate reductase do not develop hyperhomocysteinemia if they have a relatively high intake of folate, but it is not yet known whether this affects the incidence of cardiovascular disease. [Pg.494]

Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine. Figure 21-3. The methionine synthase reaction. Methionine synthase catalyzes the remethylation of homocysteine to methionine. In the first half reaction (1), a methyl group is transferred from 5-methyl tetrahydrofolate (5-MTHF) to the reduced form of cobalamin [Cob(I)], generating methyl-cobalamin [Methyl-Cob(III)] and tetrahydrofolate (THF). During the second half reaction (2), the methyl group is transferred from methylcobalamin to homocysteine, generating methionine. During the catalytic reaction, Cob(I) occasionally becomes oxidized, producing an inactive form of cobalamin, cob(II)alamin [Cob(II)]. The enzyme methionine synthase reductase (MTRR) then reactivates Cob(II) through reductive methylation, producing methyl-Cob(III). SAM, 5-adenosylmethionine SAH, 5-adeno-sylhomocysteine.
Most of the dietary folate undergoes reduction and methylation within the intestinalmucosa and what enters theportal bloodstream is alargely 5-methyl-tetrahydrofolate. Single doses of more than about 200 /xg of folic acid saturate the intestinal dUiydrofolate reductase, so that free folic acid is absorbed and circulates in the bloodstream. It can be taken up by tissues, reduced to tetrahy-drofolate, and utilized. [Pg.274]

Methylene-Tetrahydrofolate Reductase The reduction of methylene-tetrahydrofolate to methyl-tetrahydrofolate, shown in Figure 10.7, is catalyzed hy methylene-tetrahydrofolate reductase, a flavin adenine dinucleotide-dependent enzyme during the reaction, the pteridine ring of the substrate is oxidized to dihydrofolate, then reduced to tetrahydrofolate by the flavin, which is reduced by nicotinamide adenine dinucleotide phosphate (NADPH Matthews and Daubner, 1982). The reaction is irreversible under physiological conditions, and methyl-tetrahydrofolate - which is the main form of folate taken up into tissues (Section 10.2.2) - can only be utilized after demethylation catalyzed by methionine synthetase (Section 10.3.4). [Pg.284]

This functional deficiency of folate is exacerbated by the associated low concentrations of methionine and S-adenosyl methioitine, although most tissues (apart from the central nervous system) also have betaine-homocysteine methyltransferase that may be adequate to maintain tissue pools of methionine. Under normal conditions S-adenosyl methioitine inhibits methylene-tetrahydrofolate reductase and prevents the formation of further methyl-tetrahydrofolate. Relief of this inhibition results in increased reduction of one-carbon substituted tetrahydrofolates to methyl-tetrahydrofolate. [Pg.292]

As shown in Figure 10.9, the overall reaction of methionine synthetase is the transfer of the methyl group from methyl-tetrahydrofolate to homocysteine. However, the enzyme also requires S-adenosyl methionine and a flavoprotein reducing system in addition to the cobalamin prosthetic group. A common polymorphism of methionine synthetase, in which aspartate is replaced by glycine, is associated with elevated plasma homocysteine in some cases, although it is less important than methylene-tetrahydrofolate reductase polymorphisms (Section 10.3.2.1 Harmon etal., 1999). [Pg.304]

Administration of diphenylhydantoin leads to decreased activity of methylene tetrahydrofolate reductase and an increased rate of oxidation of formyl tetrahydrofolate (increased oxidation of formate and histidine), with a fall in methylene- and methyl-tetrahydrofolate - the reverse of the effect of the methyl folate trap (Billings, 1984a, 1984b). [Pg.313]

In experimental animals and with isolated tissue preparations and organ cultures, the test can be refined by measuring the production of G02 from [ C]histidine in the presence and absence of added methionine. If the impairment of histidine metabolism is the result of primary folate deficiency, the addition of methionine wUl have no effect. By contrast, if the problem is trapping of folate as methyl-tetrahydrofolate, the addition of methionine will restore normal histidine oxidation as a result of restoring the inhibition of methylene-tetrahydrofolate reductase by S-adenosylmethionine and restoring the activity of 10-formyl-tetrahydrofolate dehydrogenase, thus permitting more normal folate metabolism (Section 10.3.4.1). [Pg.317]

Thymidylate synthetase and dihydrofoiate reductase are especially active in tissues with a high rate of cell division, and hence a high rate of DNA replication and a high requirement for thymidylate. Because of this, inhibitors of dihydrofoiate reductase have been exploited as anti-cancer drugs. The most successful of these is methotrexate, an analogue of 10-methyl-tetrahydrofolate. Chemotherapy consists of alternating periods of administration of methotrexate and folate (normally as 5-formyl-tetrahydrofolate, leucovorin) in order to replete the normal tissues and avoid induction of folate deficiency — so-called leucovorin rescue . [Pg.388]

People with the abnormal variant of methylene-tetrahydrofolate reductase do not develop hyperhomocysteinaemia if they have a relatively high intake of folate. This seems to be due to the methylation of folate in the intestinal mucosa during absorption intestinal mucosal cells have a rapid turnover (section 4.1), and therefore it is not important that methylene-tetrahydrofolate reductase is less stable than normal — there is still an adequate activity of the enzyme in the intestinal mucosa to maintain absorption of methyl-tetrahydrofolate. [Pg.391]

The first two of these are mediated by 5 -deoxyadenosylcobalamin, whereas methyl transfers are effected by methylcobalamin. The mechanism of ribonucleotide reductase is discussed in Chapter 27. Methyl group transfers that employ tetrahydrofolate as a coenzyme are described later in this chapter. [Pg.599]

The best characterized B 12-dependent methyltransferases is methionine synthase (Figure 15.11) from E. coli, which catalyses the transfer of a methyl group from methyltetrahydrofolate to homocysteine to form methionine and tetrahydrofolate. During the catalytic cycle, B12 cycles between CH3-Co(in) and Co(I). However, from time to time, Co(I) undergoes oxidative inactivation to Co(II), which requires reductive activation. During this process, the methyl donor is S-adenosylmethionine (AdoMet) and the electron donor is flavodoxin (Fid) in E. coli, or methionine synthase reductase (MSR) in humans. Methionine synthase... [Pg.266]


See other pages where Methyl-tetrahydrofolate reductase is mentioned: [Pg.55]    [Pg.363]    [Pg.69]    [Pg.82]    [Pg.55]    [Pg.363]    [Pg.69]    [Pg.82]    [Pg.288]    [Pg.292]    [Pg.314]    [Pg.292]    [Pg.314]    [Pg.288]    [Pg.292]    [Pg.626]    [Pg.627]    [Pg.1818]    [Pg.744]    [Pg.462]    [Pg.486]    [Pg.804]    [Pg.176]   
See also in sourсe #XX -- [ Pg.363 ]




SEARCH



Methyl tetrahydrofolate reductase gene

Methyl-tetrahydrofolate reductase MTHFR)

Tetrahydrofolate

Tetrahydrofolate reductase

Tetrahydrofolates

© 2024 chempedia.info