Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl sweetness-structure relationship

The low energy sweetening properties of aspartame have been discussed on the basis of structural relationships [1, 83] within the context of the three point contact model of the sweet taste receptor. This model involves a hydrogen bond donor, a hydrogen bond acceptor, and a hydrophobic region with specific geometric relationships. The model accounts for the fact that only one of the four diastereomers of aspartylphenylalanyl methyl ester is sweet. [Pg.49]

The apparent molal volumes and molal compressibilities of several monosaccharides, disaccharides and methyl pyranosides in dilute aqueous solution have been studied at 5, 15, and 25°C. The results were discussed in the light of solute-solvent interactions and a model for the hydration of galactose and lactose was proposed.The molal volumes of small carbohydrate molecules have been measured in an attempt at elucidating the relationship between molecular properties and sweetness. Molal volumes reflect fine differences in structure fe.q., axial or equatorial disposition of particular hydroxy groups) which are in turn related to differences in taste. In order to interpret differences in sweetness the viscosimetric constants and the heats of dilution of three monosaccharides, three disaccharides and the very sweet chlorinated sugar (21) have been determined, and their i.r. and Raman spectra have been recorded. The osmotic... [Pg.9]


See other pages where Methyl sweetness-structure relationship is mentioned: [Pg.218]    [Pg.164]    [Pg.147]    [Pg.132]    [Pg.298]    [Pg.64]   
See also in sourсe #XX -- [ Pg.45 , Pg.274 ]




SEARCH



Methyl structure

© 2024 chempedia.info