Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Methyl bromide nucleophilic substitution

Recall that the term kinetics refers to how the rate of a reaction varies with changes m concentration Consider the nucleophilic substitution m which sodium hydroxide reacts with methyl bromide to form methyl alcohol and sodium bromide... [Pg.330]

Hughes and Ingold interpreted second order kinetic behavior to mean that the rate determining step is bimolecular that is that both hydroxide ion and methyl bromide are involved at the transition state The symbol given to the detailed description of the mech anism that they developed is 8 2 standing for substitution nucleophilic bimolecular... [Pg.330]

There are very large differences m the rates at which the various kinds of alkyl halides— methyl primary secondary or tertiary—undergo nucleophilic substitution As Table 8 2 shows for the reaction of a series of alkyl bromides... [Pg.334]

Additional evidence for carbocation intermediates in certain nucleophilic substitutions comes from observing rearrangements of the kind normally associated with such species For example hydrolysis of the secondary alkyl bromide 2 bromo 3 methylbutane yields the rearranged tertiary alcohol 2 methyl 2 butanol as the only substitution product... [Pg.344]

Methyl bromide slowly hydrolyzes in water, forming methanol and hydrobromic acid. The bromine atom of methyl bromide is an excellent leaving group in nucleophilic substitution reactions and is displaced by a variety of nucleophiles. Thus methyl bromide is useful in a variety of methylation reactions, such as the syntheses of ethers, sulfides, esters, and amines. Tertiary amines are methylated by methyl bromide to form quaternary ammonium bromides, some of which are active as microbicides. [Pg.294]

Another approach is therefore to adopt a model process that is very similar to the reactions of interest. Swain and Scott ° selected as a standard reaction the nucleophilic substitution reaction of methyl bromide in water at 25°C. [Pg.358]

The nitration of l,2,5-selenadiazolo[3,4-/] quinoline 77 with benzoyl nitrate affords the 8-nitro derivative 78, whereas methylation with methyl iodide or methyl sulfate afforded the corresponding 6-pyridinium methiodide 79 or methosulfate 80, respectively (Scheme 29). The pyridinium salt 80 was submitted to oxidation with potassium hexacyanoferrate and provided 7-oxo-6,7-dihydro derivative 81 or, by reaction of pyridinium salt 79 with phenylmagnesium bromide, the 7-phenyl-6,7-dihydro derivative 82. Nucleophilic substitution of the methiodide 79 with potassium cyanide resulted in the formation of 9-cyano-6,9-dihydroderivative 83, which can be oxidized by iodine to 9-cyano-l,2,5-selenadiazolo [3,4-/]quinoline methiodide 84. All the reactions proceeded in moderate yields (81IJC648). [Pg.226]

The solvent dependence of the reaction rate is also consistent with this mechanistic scheme. Comparison of the rate constants for isomerizations of PCMT in chloroform and in nitrobenzene shows a small (ca. 40%) rate enhancement in the latter solvent. Simple electrostatic theory predicts that nucleophilic substitutions in which neutral reactants are converted to ionic products should be accelerated in polar solvents (23), so that a rate increase in nitrobenzene is to be expected. In fact, this effect is often very small (24). For example, Parker and co-workers (25) report that the S 2 reaction of methyl bromide and dimethyl sulfide is accelerated by only 50% on changing the solvent from 88% (w/w) methanol-water to N,N-dimethylacetamide (DMAc) at low ionic strength this is a far greater change in solvent properties than that investigated in the present work. Thus a small, positive dependence of reaction rate on solvent polarity is implicit in the sulfonium ion mechanism. [Pg.69]

Lamaty and coworkers described a straightforward combination of three Pd-cata-lyzed transformations first, an intermolecular nucleophilic substitution of an al-lylic bromide to form an aryl ether second, an intramolecular Heck-type transformation in which as the third reaction the intermediate palladium species is intercepted by a phenylboronic acid [124]. Thus, the reaction of a mixture of 2-iodophenol (6/1-253), methyl 2-bromomethylacrylate 6/1-254 and phenylboronic acid in the presence of catalytic amounts of Pd(OAc)2 led to 3,3-disubstituted 2,3-di-hydrobenzofuran 6/1-255 (Scheme 6/1.66). In addition to phenylboronic acid, several substituted boronic acids have also been used in this process. [Pg.401]

We can now understand and predict why some nucleophihc substitution reactions are favoured and others are not. Thus, it is easy to convert methyl bromide into methanol by the use of hydroxide as nucleophile. On the other hand, it is not feasible to convert methanol into methyl bromide merely by using bromide as the nucleophile. [Pg.188]

Kenawy 64) immobilized ammonium and phosphonium peripheral functionalized dendritic branches on a montmorillonite supported chloromethylstyrene/methyl methacrylate copolymer (74-75). These polymer/montmorillonite-supported dendrimers were used as phase transfer catalysts (PTC) for the nucleophilic substitution reaction between -butyl bromide and thiocyanate, cyanide, and nitrite anions in a toluene or a benzene/water system. These PT catalysts could be recycled by filtration of the functionalized montmorillonite from the reaction mixture. Generally,... [Pg.128]

Consider the reversible transformation of the soil fumigant methyl bromide (CH3Br) to methyl chloride (CH3C1) in aqueous solution (a nucleophilic substitution reaction, see Chapter 13) ... [Pg.467]

SAMPLE SOLUTION (a) The nucleophile in sodium hydroxide is the negatively charged hydroxide ion. The reaction that occurs is nucleophilic substitution of bromide by hydroxide. The product is methyl alcohol. [Pg.336]


See other pages where Methyl bromide nucleophilic substitution is mentioned: [Pg.209]    [Pg.334]    [Pg.335]    [Pg.336]    [Pg.481]    [Pg.298]    [Pg.329]    [Pg.334]    [Pg.335]    [Pg.336]    [Pg.303]    [Pg.379]    [Pg.79]    [Pg.542]    [Pg.234]    [Pg.159]    [Pg.42]    [Pg.289]    [Pg.353]    [Pg.457]    [Pg.497]    [Pg.499]    [Pg.274]    [Pg.612]    [Pg.341]    [Pg.342]    [Pg.343]    [Pg.209]    [Pg.219]   
See also in sourсe #XX -- [ Pg.330 ]

See also in sourсe #XX -- [ Pg.330 ]

See also in sourсe #XX -- [ Pg.330 ]

See also in sourсe #XX -- [ Pg.306 , Pg.307 , Pg.309 ]

See also in sourсe #XX -- [ Pg.327 , Pg.328 , Pg.329 ]

See also in sourсe #XX -- [ Pg.310 , Pg.311 , Pg.312 ]




SEARCH



4- Methyl-3- - -bromid

Methyl bromide

© 2024 chempedia.info