Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Covalent Metal Compounds

PPha, pyridine) organic groups (olefines, aromatic derivatives) and also form other derivatives, e.g. halides, hydrides, sulphides, metal cluster compounds Compounds containing clusters of metal atoms linked together by covalent (or co-ordinate) bands, metaldehyde, (C2H40) ( = 4 or 6). A solid crystalline substance, sublimes without melting at I12 1I5" C stable when pure it is readily formed when elhanal is left in the presence of a catalyst at low temperatures, but has unpredictable stability and will revert to the monomer, ft is used for slug control and as a fuel. [Pg.257]

For the transition metals it is often impossible to reach a noble gas structure except in covalent compounds (see effective atomic number rule) and it is found that relative stability is given by having the sub-shells (d or f) filled, half-filled or empty. [Pg.415]

Lewis acids are defined as molecules that act as electron-pair acceptors. The proton is an important special case, but many other species can play an important role in the catalysis of organic reactions. The most important in organic reactions are metal cations and covalent compounds of metals. Metal cations that play prominent roles as catalysts include the alkali-metal monocations Li+, Na+, K+, Cs+, and Rb+, divalent ions such as Mg +, Ca +, and Zn, marry of the transition-metal cations, and certain lanthanides. The most commonly employed of the covalent compounds include boron trifluoride, aluminum chloride, titanium tetrachloride, and tin tetrachloride. Various other derivatives of boron, aluminum, and titanium also are employed as Lewis acid catalysts. [Pg.233]

A useful property of liquids is their ability to dissolve gases, other liquids and solids. The solutions produced may be end-products, e.g. carbonated drinks, paints, disinfectants or the process itself may serve a useful function, e.g. pickling of metals, removal of pollutant gas from air by absorption (Chapter 17), leaching of a constituent from bulk solid. Clearly a solution s properties can differ significantly from the individual constituents. Solvents are covalent compounds in which molecules are much closer together than in a gas and the intermolecular forces are therefore relatively strong. When the molecules of a covalent solute are physically and chemically similar to those of a liquid solvent the intermolecular forces of each are the same and the solute and solvent will usually mix readily with each other. The quantity of solute in solvent is often expressed as a concentration, e.g. in grams/litre. [Pg.26]

The HF wave funetion eontains equal amounts of ionie and eovalent eontributions (Section 4.3), For covalently bonded systems, like H2O, the HF wave funetion is too ionie, and the effect of electron correlation is to increase the covalent contribution. Since the ionic dissociation limit is higher in energy than the covalent, the effect is that the equiUbrium bond length increases when correlation methods are used. For dative bonds, such as metal-ligand compounds, the situation is reversed. In this case the HF wave function dissociates correctly, and bond lengths are normally too long. Inclusion of... [Pg.265]

Green MLH, Green JC (In preparation) Systematic chemistry of covalent compounds of the d-block transition metals Seddon EA, Seddon KR (1984) The chemistry of ruthenium, Elsevier, Amsterdam... [Pg.141]

The elements show increasing metallic character down the group (Table 14.6). Carbon has definite nonmetallic properties it forms covalent compounds with nonmetals and ionic compounds with metals. The oxides of carbon and silicon are acidic. Germanium is a typical metalloid in that it exhibits metallic or nonmetallic properties according to the other element present in the compound. Tin and, even more so, lead have definite metallic properties. However, even though tin is classified as a metal, it is not far from the metalloids in the periodic table, and it does have some amphoteric properties. For example, tin reacts with both hot concentrated hydrochloric acid and hot alkali ... [Pg.724]

Carbon forms ionic carbides with the metals of Groups 1 and 2, covalent carbides with nonmetals, and interstitial carbides with d-block metals. Silicon compounds are more reactive than carbon compounds. They can act as Lewis acids. [Pg.735]

Boron carbide is a non-metallic covalent material with the theoretical stoichiometric formula, B4C. Stoichiometry, however, is rarely achieved and the compound is usually boron rich. It has a rhombohedral structure with a low density and a high melting point. It is extremely hard and has excellent nuclear properties. Its characteristics are summarized in Table 9.2. [Pg.234]

Aluminum nitride is a highly stable covalent compound with the unusual combination of high thermal conductivity (comparable to that of metals) and high electrical insulation (comparable to the... [Pg.267]

The systematic investigation of the chemistry of the transition elements began in the nineteenth century, and it rapidly became apparent that many of the compounds were somewhat different from those with which chemists were then familiar. There was a clear difference between the behaviour of simple ionic compounds such as sodium chloride and typical transition-element compounds such as FeCl2-4H20. It was also obvious that the compounds did not resemble the typically covalent compounds of organic chemistry. It was considered that many of the compounds formed by transition metals were of a complex constitution, and they were accordingly known as complexes. [Pg.3]

Apart from the three broad categories of student conceptions discussed above, students displayed several inappropriate conceptions relating to the stractural properties of substances. For example, 14% of students suggested that Mg + ions were present in magnesium ribbon. A second example involved the chemical reaction between copper(II) oxide powder and dilute sulphuric acid. In this instance, 25% of students suggested that Cu + ions were present only in aqueous solution but not in the solid and liquid states. This view was rather unexpected because students had earlier been introdnced to ionic and covalent compounds. It is likely that students had merely rote-learned the general rale without sufficient understanding that ionic solids are formed between metallic and non-metallic elements. [Pg.164]

Oxidation-Reduction Reactions between Covalent Compounds and Metal Ions... [Pg.274]

COVALENT COMPOUNDS, METAL IONS OXIDATION-REDUCTION... [Pg.276]

COVALENT COMPOUNDS, METAL IONS OXIDATION-REDUCTION 2. Oxidation by Cr(VI) and Mn(VII)... [Pg.278]


See other pages where Covalent Metal Compounds is mentioned: [Pg.68]    [Pg.257]    [Pg.121]    [Pg.121]    [Pg.285]    [Pg.417]    [Pg.114]    [Pg.417]    [Pg.327]    [Pg.42]    [Pg.384]    [Pg.572]    [Pg.289]    [Pg.103]    [Pg.701]    [Pg.913]    [Pg.1206]    [Pg.300]    [Pg.150]    [Pg.129]    [Pg.18]    [Pg.238]   
See also in sourсe #XX -- [ Pg.407 ]




SEARCH



Alkali metals covalent compounds

Covalent bond transition metal compounds

Covalent compounds

Transition metal compounds covalent bonding

© 2024 chempedia.info