Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Metal general discussion

Chemisoq)tion bonding to metal and metal oxide surfaces has been treated extensively by quantum-mechanical methods. Somoijai and Bent [153] give a general discussion of the surface chemical bond, and some specific theoretical treatments are found in Refs. 154-157 see also a review by Hoffman [158]. One approach uses the variation method (see physical chemistry textbooks) ... [Pg.714]

Perhaps the most fascinating detail is the surface reconstruction that occurs with CO adsorption (see Refs. 311 and 312 for more general discussions of chemisorption-induced reconstructions of metal surfaces). As shown in Fig. XVI-8, for example, the Pt(lOO) bare surface reconstructs itself to a hexagonal pattern, but on CO adsorption this reconstruction is lifted [306] CO adsorption on Pd( 110) reconstructs the surface to a missing-row pattern [309]. These reconstructions are reversible and as a result, oscillatory behavior can be observed. Returning to the Pt(lOO) case, as CO is adsorbed patches of the simple 1 x 1 structure (the structure of an undistorted (100) face) form. Oxygen adsorbs on any bare 1 x 1 spots, reacts with adjacent CO to remove it as CO2, and at a certain point, the surface reverts to toe hexagonal stmcture. The presumed sequence of events is shown in Fig. XVIII-28. [Pg.737]

Several metals that are farther removed from the noble gases in the periodic table form positive ions. These include the transition metals in Groups 3 to 12 and the post-transition metals in Groups 13 to 15. The cations formed by these metals typically have charges of +1, +2, or +3 and ordinarily do not have noble-gas structures. We will postpone to Chapter 4 a general discussion of the specific charges of cations formed by these metals. [Pg.38]

General Discussion—Generation of Reactive Intermediates via Photolysis of Transition-Metal Polyhydride Complexes... [Pg.375]

An important aspect of the study of water under electrochemical conditions is that one is able to continuously modify the charge on the metal surface and thus apply a well-defined external electric field, which can have a dramatic effect on adsorption and on chemical reactions. Here we briefly discuss the effect of the external electric field on the properties of water at the solution/metal interface obtained from molecular dynamics computer simulations. A general discussion of the theoretical and experi-... [Pg.138]

This article presents a general discussion of actinide metallurgy, including advanced methods such as levitation melting and chemical vapor-phase reactions. A section on purification of actinide metals by a variety of techniques is included. Finally, an element-by-element discussion is given of the most satisfactory metallurgical preparation for each individual element actinium (included for completeness even though not an actinide element), thorium, protactinium, uranium, neptunium, plutonium, americium, curium, berkelium, californium, and einsteinium. [Pg.4]

Fig. 4. Schematic vacuum system for metal atom reactions. X represents the stopcock or Teflon-in-glass valve. Satisfactory components (for a general discussion of vacuum line design see References 1 and 4) forepump, 25 L/min free air capacity diffusion pump, 2 L/sec main trap is removable and measures about 300 mm deep main manifold has a diameter of about 25 mm, stopcock or valve in manifold should be at least 10 mm substrate container is removable container with 1-2 mm Teflon-in-glass needle valve connected to bottom of container. Connection between this needle valve and the reactor may be 1/8 in. od. Teflon tubing is used. Alternatively, the substrate may be added as shown in Fig. 3. Fig. 4. Schematic vacuum system for metal atom reactions. X represents the stopcock or Teflon-in-glass valve. Satisfactory components (for a general discussion of vacuum line design see References 1 and 4) forepump, 25 L/min free air capacity diffusion pump, 2 L/sec main trap is removable and measures about 300 mm deep main manifold has a diameter of about 25 mm, stopcock or valve in manifold should be at least 10 mm substrate container is removable container with 1-2 mm Teflon-in-glass needle valve connected to bottom of container. Connection between this needle valve and the reactor may be 1/8 in. od. Teflon tubing is used. Alternatively, the substrate may be added as shown in Fig. 3.
The main classes of materials employed as catalysts are metals (generally transition and noble metals), oxides (including transition-metal oxides), transition-metal sulfides and zeolites. In the following sections, we discuss some of the more common structures and chemistry exhibited by catalytic systems. [Pg.13]

A general discussion of the oxygen species reported on metal surfaces is outside the scope of this review, but this section covers a few cases where... [Pg.74]

This chapter consists of two sections, one being a general discussion of the stable forms of the elements, whether they are metals or non-metals, and the reasons for the differences. The theory of the metallic bond is introduced, and related to the electrical conduction properties of the elements. The second section is devoted to a detailed description of the energetics of ionic bond formation. A discussion of the transition from ionic to covalent bonding in solids is also included. [Pg.145]

Two other routes to transition metal amides were not generally discussed in the 1980 book. The first of these involves the deprotonation of aminometal complexes as shown in Equation (6.3), which has afforded several new amido complexes. [Pg.163]

Of the many reviews of the dicyclopentadienyl metals, that of Pauson (8) gives a general discussion the substitution reactions have also been reviewed (9). The nature of the bonding in these compounds has been discussed by Richardson (10), and qualitative accounts are now available in standard texts (11, 12). [Pg.3]

It is important to establish the main similarities and differences in the electronic spectra of isoelectronic metal carbonyls and cyanides and to relate these spectral comparisons to the nature of the M-CN and M—CO bonds. In this paper the electronic spectra of d6 metal carbonyls and cyanides are assigned on the basis of a derived molecular orbital energy level scheme. The differences in the energies erf the single electron molecular orbitals for representative metal hexa-carbonyls and hexacyanides are obtained and a general discussion erf electronic structure is presented. [Pg.245]

This section emphasizes work done in the last few years. The reader is referred to other sources for reviews of older work236 or more general discussions of nucleophilic reactions at phosphorus.237"245 More general discussions of enzymic phosphoryl and nucleotidyl transfer are available,246 248 and the role of divalent metal ions has been reviewed.249"251... [Pg.443]

There are a few examples of additions of carbon electrophiles to metal complexes of allyl5 and dienyl6 moieties and arenes7 which suggest many possible future extensions. However, the vast majority of systems examined involve additions of carbon electrophiles to electron-rich metal-diene complexes. TTiis chapter will present a general discussion and several examples of such additions. Section 3.5.2 will examine simple -q4 diene cortiplexes, while Section 3.5.3 will treat polyalkene complexes containing an V-diene unit and one or more uncomplexed double bonds. [Pg.696]

In this section we discuss five different materials as examples with different charging mechanisms mercury, silver iodide, oxides, mica, and semiconductors. Mercury is one example of an inert metal. Silver iodide is an example of a weakly soluble salt. Oxides are an important class of minerals. For most biological substances like proteins or lipids a similar charging process dominates. Mica is an example for a clay mineral. In addition, it is widely used as a substrate in surface force measurements and microscopy. We also included a general discussion of semiconductors because the potential in the semiconductor can be described similarly to the diffuse layer in electrolytes and there is an increasing effort to make a direct contact between a liquid or a living cell and a semiconductor. [Pg.61]


See other pages where Metal general discussion is mentioned: [Pg.729]    [Pg.41]    [Pg.371]    [Pg.263]    [Pg.47]    [Pg.92]    [Pg.43]    [Pg.106]    [Pg.300]    [Pg.348]    [Pg.311]    [Pg.234]    [Pg.171]    [Pg.734]    [Pg.215]    [Pg.219]    [Pg.55]    [Pg.69]    [Pg.640]    [Pg.39]    [Pg.320]    [Pg.1360]    [Pg.1452]    [Pg.1490]    [Pg.296]    [Pg.102]    [Pg.309]    [Pg.2426]    [Pg.29]    [Pg.188]    [Pg.510]   
See also in sourсe #XX -- [ Pg.400 ]




SEARCH



General discussion

© 2024 chempedia.info