Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesoscale variable kinetic equation

In most cases, closure of the terms in the kinetic equation will require prior knowledge of how the mesoscale variables are influenced by the underlying physics. Taking the fluid-drag term as an example, the simplest model has the form... [Pg.20]

The process of formulating mesoscale models from the microscale equations is widely used in transport phenomena (Ferziger Kaper, 1972). For example, heat transfer between the disperse phase and the fluid depends on the Nusselt number, and mass transfer depends on the Sherwood number. Correlations for how the Nusselt and Sherwood numbers depend on the mesoscale variables and the moments of the NDF (e.g. mean particle temperature and mean particle concentration) are available in the literature. As microscale simulations become more and more sophisticated, modified correlations that are based on the microscale results will become more and more common (Beetstra et al, 2007 Holloway et al, 2010 Tenneti et al, 2010). Note that, because the kinetic equation requires mesoscale models that are valid locally in phase space (i.e. for a particular set of mesoscale variables) as opposed to averaged correlations found from macroscale variables, direct numerical simulation of the microscale model is perhaps the only way to obtain the data necessary in order for such models to be thoroughly validated. For example, a macroscale model will depend on the average drag, which is denoted by... [Pg.20]

The transport equations appearing in macroscale models can be derived from the kinetic equation using the definition of the moment of interest. For example, if the moment of interest is the disperse-phase volume fraction, then it suffices to integrate over the mesoscale variables. (See Section 4.3 for a detailed discussion of this process.) Using the velocity-distribution function from Section 1.2.2 as an example, this process yields... [Pg.21]

The answer to this question is mainly driven by the computational cost of solving the kinetic equation due to the large number of independent variables. In the simplest example of a 3D velocity-distribution function n t, x, v) the number of independent variables is 1 + 3 + 3 = 1. However, for polydisperse multiphase flows the number of mesoscale variables can be much larger than three. In comparison, the moment-transport equations involve four independent variables (physical space and time). Furthermore, the form of the moment-transport equations is such that they can be easily integrated into standard computational-fluid-dynamics (CFD) codes. Direct solvers for the kinetic equation are much more difficult to construct and require specialized numerical methods if accurate results are to be obtained (Filbet Russo, 2003). For example, with a direct solver it is necessary to discretize all of phase space since a priori the location of nonzero values of n is unknown, which can be very costly when phase space is not bounded. [Pg.22]


See other pages where Mesoscale variable kinetic equation is mentioned: [Pg.16]    [Pg.19]    [Pg.19]    [Pg.19]    [Pg.20]    [Pg.22]    [Pg.28]    [Pg.114]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Equation variables

Kinetic equations

Kinetics equations

Mesoscale

Mesoscale variability

© 2024 chempedia.info