Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mesoporous titanium silicates epoxidation reactions

The incorporation of Ti into various framework zeolite structures has been a very active research area, particularly during the last 6 years, because it leads to potentially useful catalysts in the oxidation of various organic substrates with diluted hydrogen peroxide [1-7]. The zeolite structures, where Ti incorporation has been achieved are ZSM-5 (TS-1) [1], ZSM-11 (TS-2) [2] ZSM-48 [3] and beta [4]. Recently, mesoporous titanium silicates Ti-MCM-41 and Ti-HMS have also been reported [5]. TS-1 and TS-2 were found to be highly active and selective catalysts in various oxidation reactions [6,7]. All other Ti-modified zeolites and molecular sieves had limited but interesting catalytic activities. For example, Ti-ZSM-48 was found to be inactive in the hydroxylation of phenol [8]. Ti-MCM-41 and Ti-HMS catalyzed the oxidation of very bulky substrates like 2,6-di-tert-butylphenol, norbomylene and a-terpineol [5], but they were found to be inactive in the oxidation of alkanes [9a], primary amines [9b] and the ammoximation of carbonyl compounds [9a]. As for Ti-P, it was found to be active in the epoxidation of alkenes and the oxidation of alkanes and alcohols [10], even though the conversion of alkanes was very low. Davis et al. [11,12] also reported that Ti-P had limited oxidation and epoxidation activities. In a recent investigation, we found that Ti-P had a turnover number in the oxidation of propyl amine equal to one third that of TS-1 and TS-2 [9b]. As seen, often the difference in catalytic behaviors is not attributable to Ti sites accessibility. [Pg.309]

Several framework titanium-substituted mesoporous silicates, including Ti-MCM-41 (42,43), Ti-HMS (198), Ti-MCM-36 (180), Ti-MCM-48 (199), and Ti-SBA-15 (200), have shown promising activity for the epoxidation of bulky olefins with alkyl hydroperoxides as oxidants. Unfortunately, compared with the microporous MFI-type titanium silicates, the mesoporous materials exhibit low activity for epoxidation reactions. The hydrophilic nature of mesoporous silica catalysts with isomorphous titanium substitution is considered to be one of the major reasons for the low activity (179). Various attempts have been made to improve the activity. Using a different synthetic procedure, titanium species have been grafted onto... [Pg.48]


See other pages where Mesoporous titanium silicates epoxidation reactions is mentioned: [Pg.657]    [Pg.568]    [Pg.327]    [Pg.781]    [Pg.492]    [Pg.253]    [Pg.160]   
See also in sourсe #XX -- [ Pg.67 , Pg.68 , Pg.69 ]

See also in sourсe #XX -- [ Pg.67 , Pg.68 , Pg.69 ]




SEARCH



Epoxidation silicates

Epoxide reaction

Epoxides reactions

Mesoporous titanium silicates

Reactions epoxidation

Silicate reactions

Titanium reactions

Titanium silicate

© 2024 chempedia.info