Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mechanics MM

For this reason, there has been much work on empirical potentials suitable for use on a wide range of systems. These take a sensible functional form with parameters fitted to reproduce available data. Many different potentials, known as molecular mechanics (MM) potentials, have been developed for ground-state organic and biochemical systems [58-60], They have the advantages of simplicity, and are transferable between systems, but do suffer firom inaccuracies and rigidity—no reactions are possible. Schemes have been developed to correct for these deficiencies. The empirical valence bond (EVB) method of Warshel [61,62], and the molecular mechanics-valence bond (MMVB) of Bemardi et al. [63,64] try to extend MM to include excited-state effects and reactions. The MMVB Hamiltonian is parameterized against CASSCF calculations, and is thus particularly suited to photochemistry. [Pg.254]

For many applications, especially studies on enzyme reaction mechanisms, we do not need to treat the entire system quantum mechanically. It is often sufficient to treat the center of interest (e.g., the active site and the reacting molecules) quantum mechanically. The rest of the molecule can be treated using classical molecular mechanics (MM see Section 7.2). The quantum mechanical technique can be ab-initio, DFT or semi-empirical. Many such techniques have been proposed and have been reviewed and classified by Thiel and co-workers [50] Two effects of the MM environment must be incorporated into the quantum mechanical system. [Pg.395]

A Fortran90 library for the simulation of molecular systems using molecular mechanics (MM) and hybrid quantum mechanics/molecular mechanics (QM)/ MM) potential energy functions. http //www.ibs.fr/ext/labos/LDM/projet6/... [Pg.400]

A variant on this procedure produces a first approximation to the molecular mechanics (MM) heat paiameters (Chapters 4 and 5) for C—C and C—H. Instead of atomization energies, the enthalpies of formation of propane and butane (—25.02 and —30.02 kcal mol ) are put directly into the b vector. The results (2.51 kcal mol and —3.76 kcal mol ) are not very good approximations to the heat parameters actually used (2.45 kcal mol and —4.59 kcal mol ) because of other factors to be taken up later, but the calculation illustrates the method and there is rough agreement. [Pg.57]

Molecula.rMecha.nics. Molecular mechanics (MM), or empirical force field methods (EFF), ate so called because they are a model based on equations from Newtonian mechanics. This model assumes that atoms are hard spheres attached by networks of springs, with discrete force constants. [Pg.163]

Molecular mechanics (MM) energy minimiza tion indicates that the two modes lead to monolayers exhibiting different types of packing arrangements, but comparable in their ground state energies. (The monolayer resulting from the mode is more stable by 2.5 kJ/mol (0.6 kcal/mol))... [Pg.542]

Table 3.3. Correlation between Intramolecular Strain from Molecular Mechanics (MM) Calculations and Activation Energies for Dissociation of C—C Bonds in Substituted Ethanes"... Table 3.3. Correlation between Intramolecular Strain from Molecular Mechanics (MM) Calculations and Activation Energies for Dissociation of C—C Bonds in Substituted Ethanes"...
Iti Chapter 1, we dealt at length with molecular mechanics. MM is a classical model where atoms are treated as composite but interacting particles. In the MM model, we assume a simple mutual potential energy for the particles making up a molecular system, and then look for stationary points on the potential energy surface. Minima correspond to equilibrium structures. [Pg.72]

In Chapter 2, I mentioned that there was great interest in water as a solvent, and explained about the pioneering calculations of Rahman and Stillinger (1972). Many molecular mechanics (MM), Monte Carlo (MC) and molecular dynamics (MD) studies have been made based on their box of 216 water molecules. A good starting point is the work of Jorgensen and coworkers. [Pg.254]

According to molecular mechanics (MM) calculations, the minimum energy conformation of the enolate is a twist-boat (because the chair leads to an axial orientation of the f-butyl group). The enolate is convex in shape with the second ring shielding the bottom face of the enolate, so alkylation occurs from the top. [Pg.27]

A second approach is based on the methodology first explored in the seminal work by Warshel and Levitt as early as 1976 [21], and is the use of hybrid quantum mechanics/molecular mechanics (QM/MM) calculations whereby a subsection of the system is treated by QM methods, the remainder (environment) is treated by standard molecular mechanics (MM) methods, and a coupling potential is used to connect the two regions [22], This methodology will then be exemplified with work developed in this group in recent years [23-26],... [Pg.3]

Despite advent of theoretical methods and techniques and faster computers, no single theoretical method seems to be capable of reliable computational studies of reactivities of biocatalysts. Ab initio quantum mechanical (QM) methods may be accurate but are still too expensive to apply to large systems like biocatalysts. Semi-empirical quantum methods are not as accurate but are faster, but may not be fast enough for long time simulation of large molecular systems. Molecular mechanics (MM) force field methods are not usually capable of dealing with bond-breaking and formation... [Pg.21]

An alternative approach is to replace an accurate but expensive first-principle-based technique by a reliable model potential. Such potentials, broadly referred to as molecular mechanics (MM), generally cannot account for bond-breaking, but can, in principle, account for the range of intermolecular interactions. However, using a fitted pair-wise potential may result in losing quantitative accuracy, predictability, and the underlying physics. [Pg.200]

Molecular mechanics (MM) calculations have been employed for determining dihedral angles and to establish a comparison with values calculated from coupling constants, during conformational studies of tricyclic and tetracyclic quinolizidine alkaloids. The MM results had to be treated with care, as they sometimes predicted ring conformations different to those supported by experimental data <1999JST215>. [Pg.4]

The transition state was shown to have a four-centered nonplanar structure and the product showed a strong jS-agostic interaction.59 Molecular-mechanics (MM) calculations based on the structure of the transition state indicated that the regioselectivity is in good agreement with the steric energy of the transition state rather than the stability of the 7r-complex. The MM study also indicated that the substituents on the Cp rings determine the conformation of the polymer chain end, and the fixed polymer chain end conformation in turn determines the stereochemistry of olefin insertion at the transition state.59... [Pg.33]

Molecular mechanics (MM) potentials, direct molecular dynamics ... [Pg.86]

In spite of its limitations, molecular mechanics (MM) is a technique that is widely used for the computation of molecular structures and relative stabilities. The advantage of MM over quantum mechanical methods is mainly based on the computational simplicity of empirical force field calculations, leading to a comparatively small computational effort for MM calculations. Therefore, even large... [Pg.130]

Fig. 5.1 Schematic representation of the division of a system into quantum mechanical (QM) and molecular mechanical (MM) parts. Fig. 5.1 Schematic representation of the division of a system into quantum mechanical (QM) and molecular mechanical (MM) parts.
Extensive computational calculations have been performed by using molecular mechanics (MM) [79], quantum mechanics (QM) [80], or combined MM/QM methods [81]. As major contributions, these theoretical studies predict the greater stability of the major isomer, explain the higher reactivity of the minor diastereomer, introduce the formation of a dihydrogen adduct as intermediate in the oxidative addition of H2 to the catalyst-substrate complexes, and propose the migratory insertion, instead of the oxidative addition, as a turnover-limiting step. [Pg.27]

Molecular mechanics (MM), 16 727, 741-743 studies of, 26 104 Molecular mechanism of action, identifying, 27 646... [Pg.595]


See other pages where Mechanics MM is mentioned: [Pg.96]    [Pg.97]    [Pg.93]    [Pg.198]    [Pg.881]    [Pg.3]    [Pg.6]    [Pg.267]    [Pg.19]    [Pg.33]    [Pg.92]    [Pg.2]    [Pg.30]    [Pg.106]    [Pg.138]    [Pg.219]    [Pg.352]    [Pg.117]    [Pg.178]    [Pg.130]    [Pg.132]    [Pg.4]    [Pg.177]    [Pg.199]    [Pg.1085]    [Pg.2]    [Pg.167]   


SEARCH



Local Molecular Mechanics (MM)

MM, molecular mechanics

Quantum and molecular mechanical QM/MM)

Quantum mechanical molecular mechanics QM/MM) methodology

Quantum mechanical-molecular mechanics QM/MM)

Quantum mechanical/molecular mechanics QM/MM) methods

Quantum mechanical/molecular mechanics QM/MM) simulation

© 2024 chempedia.info