Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ultraviolet-visible spectroscopy matrix isolation

The basic methods of the identification and study of matrix-isolated intermediates are infrared (IR), ultraviolet-visible (UV-vis), Raman and electron spin resonance (esr) spectroscopy. The most widely used is IR spectroscopy, which has some significant advantages. One of them is its high information content, and the other lies in the absence of overlapping bands in matrix IR spectra because the peaks are very narrow (about 1 cm ), due to the low temperature and the absence of rotation and interaction between molecules in the matrix. This fact allows the identification of practically all the compounds present, even in multicomponent reaetion mixtures, and the determination of vibrational frequencies of molecules with high accuracy (up to 0.01 cm when Fourier transform infrared spectrometers are used). [Pg.6]

Whether laser flash photolysis (LFP) is used to detect RIs before they react, or matrix isolation at very low temperatures is employed to slow down or quench these reactions, spectroscopic characterization of RIs is frequently limited to infrared (IR) and/or ultraviolet-visible (UV-vis) spectroscopy. Nuclear magnetic resonance (NMR) spectroscopy, which is generally the most useful spectroscopic technique for unequivocally assigning structures to stable organic molecules, is inapplicable to many types of RI. [Pg.964]

Organic stractures can be determined accurately and quickly by spectroscopic methods. Mass spectrometry determines mass of a molecule and its atomic composition. NMR spectroscopy reveals the carbon skeleton of the molecule, whereas IR spectroscopy determines functional groups in the molecules. UV-visible spectroscopy tells us about the conjugation present in a molecule. Spectroscopic methods have also provided valuable evidence for the intermediacy of transient species. Most of the common spectroscopic techniques are not appropriate for examining reactive intermediates. The exceptions are visible and ultraviolet spectroscopy, whose inherent sensitivity allows them to be used to detect very low concentrations for example, particularly where combined with flash photolysis when high concentrations of the intermediate can be built up for UV detection, or by using matrix isolation techniques when species such as ortho-benzyne can be detected and their IR spectra obtained. Unfortunately, UV and visible spectroscopy do not provide the rich structural detail afforded by IR and especially H and NMR spectroscopy. Current mechanistic studies use mostly stable isotopes such as H, and 0. Their presence and position in a molecule can... [Pg.15]


See other pages where Ultraviolet-visible spectroscopy matrix isolation is mentioned: [Pg.823]    [Pg.265]    [Pg.92]   
See also in sourсe #XX -- [ Pg.390 ]




SEARCH



Matrix isolation

Matrix isolation spectroscopy

Spectroscopy isolated

Spectroscopy ultraviolet visible

Ultraviolet spectroscopy

Ultraviolet-visible

© 2024 chempedia.info