Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Material characteristic properties Thermal conductivity

The velocity held is determined by the characteristic length L0, and velocity w0 e.g. the entry velocity in a tube or the undisturbed velocity of a fluid flowing around a body, along with the density g and viscosity rj of the fluid. While density already plays a role in frictionless flow, the viscosity is the fluid property which is characteristic in friction flow and in the development of the boundary layer. The two material properties, thermal conductivity A and specific heat capacity c, of the fluid are important for the determination of the temperature held in conjunction with the characteristic temperature difference Ai 0. The specihc heat capacity links the enthalpy of the fluid to its temperature. [Pg.18]

Thermal Conductivity. More information is available relating thermal conductivity to stmctural variables of cellular polymers than for any other property. Several papers have discussed the relation of the thermal conductivity of heterogeneous materials in general (187,188) and of plastic foams in particular (132,143,151,189—191) with the characteristic stmctural variables of the systems. [Pg.414]

Naturally, not all of these properties are improved at the same time nor is there usually any requirement to do so. In fact, some of the properties are in conflict with one another, e.g., thermal insulation versus thermal conductivity. The objective is merely to create a material that has only the characteristics needed to perform the design task. [Pg.2]

Cubic boron nitride (c-BN) is a different material altogether from h-BN, with a structure similar to that of diamond, which is characterized by extremely high hardness (second to diamond) and high thermal conductivity.As such, it is a material of great interest and a potential competitor to diamond, particularly for cutting and grinding applications. Its characteristics and properties are shown in Table 10.3... [Pg.274]

The low-temperature thermal conductivity of different materials may differ by many orders of magnitude (see Fig. 3.16). Moreover, the thermal conductivity of a single material, as we have seen, may heavily change because of impurities or defects (see Section 11.4). In cryogenic applications, the choice of a material obviously depends not only on its thermal conductivity but also on other characteristics of the material, such as the specific heat, the thermal contraction and the electrical and mechanical properties [1], For a good thermal conductivity, Cu, Ag and A1 (above IK) are the best metals. Anyway, they all are quite soft especially if annealed. In case of high-purity aluminium [2] and copper (see Section 11.4.3), the thermal conductivities are k 10 T [W/cm K] and k T [W/cm K], respectively. [Pg.104]

In Volume 1, the behaviour of fluids, both liquids and gases is considered, with particular reference to their flow properties and their heat and mass transfer characteristics. Once the composition, temperature and pressure of a fluid have been specified, then its relevant physical properties, such as density, viscosity, thermal conductivity and molecular diffu-sivity, are defined. In the early chapters of this volume consideration is given to the properties and behaviour of systems containing solid particles. Such systems are generally more complicated, not only because of the complex geometrical arrangements which are possible, but also because of the basic problem of defining completely the physical state of the material. [Pg.1]

In order to select materials that will maintain acceptable mechanical characteristics and dimensional stability one must be aware of both the normal and extreme thermal operating environments to which a product will be subjected. TS plastics have specific thermal conditions when compared to TPs that have various factors to consider which influence the product s performance and processing capabilities. TPs properties and processes are influenced by their thermal characteristics such as melt temperature (Tm), glass-transition temperature (Tg), dimensional stability, thermal conductivity, specific heat, thermal diffusivity, heat capacity, coefficient of thermal expansion, and decomposition (Td) Table 1.2 also provides some of these data on different plastics. There is a maximum temperature or, to be more precise, a maximum time-to-temperature relationship for all materials preceding loss of performance or decomposition. Data presented for different plastics in Figure 1.5 show 50% retention of mechanical and physical properties obtainable at room temperature, with plastics exposure and testing at elevated temperatures. [Pg.17]

The most important property for insulation is thermal conductivity. The following transport types participate in the transmission of heat heat conduction in PS, heat conduction in the filling gas (air), radiation heat transfer and heat convection by convection flows in the closed cells. The thermal conductivity of the air in the cells contributes the most to the total heat transport. The radiation fraction depends on the diameter of the cells formed. The thermal conductivity depends on the density of the foamed PS material. Thermal conductivity decreases with increasing bulk density, reaches a minimum and then rises again (Figure 9.15). The following processes are responsible for this characteristic. [Pg.185]


See other pages where Material characteristic properties Thermal conductivity is mentioned: [Pg.206]    [Pg.479]    [Pg.290]    [Pg.152]    [Pg.174]    [Pg.5]    [Pg.210]    [Pg.29]    [Pg.337]    [Pg.81]    [Pg.2]    [Pg.314]    [Pg.57]    [Pg.531]    [Pg.30]    [Pg.212]    [Pg.509]    [Pg.349]    [Pg.363]    [Pg.110]    [Pg.554]    [Pg.141]    [Pg.295]    [Pg.51]    [Pg.103]    [Pg.259]    [Pg.107]    [Pg.36]    [Pg.177]    [Pg.341]    [Pg.30]    [Pg.509]    [Pg.248]    [Pg.159]    [Pg.309]    [Pg.330]    [Pg.388]    [Pg.212]    [Pg.318]    [Pg.538]    [Pg.2]    [Pg.380]    [Pg.583]   
See also in sourсe #XX -- [ Pg.142 ]




SEARCH



Characteristic properties

Characteristics material

Conducting properties

Conduction material property

Conductive materials

Conductivity characteristics

Conductivity materials

Conductivity, thermal properties

Material properties thermal conductivity

Properties conductivity

Thermal material properties

Thermal materials

© 2024 chempedia.info