Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Mass spectrometry neutral loss scan mode

Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher. Figure 5.27 Selective detection of lactolated peptides from a tryptic digest of / -lacto-globulins by LC-electrospray-MS-MS, showing (a) the total-ion-cnrrent trace in full-scan mode, and (b) the total-ion-current trace in neutral-loss-scanning mode. Figure from Selective detection of lactolated peptides in hydrolysates by liquid chromatography/ electrospray tandem mass spectrometry , by Molle, D., Morgan, F., BouhaUab, S. and Leonil, J., in Analytical Biochemistry, Volume 259, 152-161, Copyright 1998, Elsevier Science (USA), reproduced with permission from the publisher.
Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17. Fig. 11.16. Representation of three tandem mass spectrometry (MS/MS) scan modes illustrated for a triple quadrupole instrument configuration. The top panel shows the attributes of the popular and prevalent product ion CID experiment. The first mass filter is held at a constant m/z value transmitting only ions of a single mlz value into the collision region. Conversion of a portion of translational energy into internal energy in the collision event results in excitation of the mass-selected ions, followed by unimolecular dissociation. The spectrum of product ions is recorded by scanning the second mass filter (commonly referred to as Q3 ). The center panel illustrates the precursor ion CID experiment. Ions of all mlz values are transmitted sequentially into the collision region as the first analyzer (Ql) is scanned. Only dissociation processes that generate product ions of a specific mlz ratio are transmitted by Q3 to the detector. The lower panel shows the constant neutral loss CID experiment. Both mass analyzers are scanned simultaneously, at the same rate, and at a constant mlz offset. The mlz offset is selected on the basis of known neutral elimination products (e.g., H20, NH3, CH3COOH, etc.) that may be particularly diagnostic of one or more compound classes that may be present in a sample mixture. The utility of the two compound class-specific scans (precursor ion and neutral loss) is illustrated in Fig. 11.17.
What are the three most common tandem mass spectrometry (MS/MS) scan modes (product ion scan, precursor ion scan, constant neutral loss scan). [Pg.401]

The most popular two-dimensional mass spectrometry configuration at present is the QQQ, or triple-sector quadrupole, represented schematically in Fig. 3.9. Three scan modes are possible with this configuration product ion scan, precursor ion scan, and constant neutral loss scan. Product ion scan is the most widely used, and involves using Qj to selectively transmit one precursor ion to Q2 where it is fragmented, normally by collisions with an inert gas such as helium. This type of fragmentation is referred to as collision-induced dissociation, or CID. Q2 is operated in radio frequency mode only, and thus stores ions of a broad m/z range until they are transmitted to Q3 for mass analysis of the product ions. [Pg.55]

Fig. 1. Experimental techniques available for surface studies. SEM = Scanning electron microscopy (all modes) AES = Auger electron spectroscopy LEED = low energy electron diffraction RHEED = reflection high energy electron diffraction ESD = electron stimulated desorption X(U)PS = X-ray (UV) photoelectron spectroscopy ELS = electron loss spectroscopy RBS = Rutherford back scattering LEIS = low energy ion scattering SIMS = secondary ion mass spectrometry INS = ion neutralization spectroscopy. Fig. 1. Experimental techniques available for surface studies. SEM = Scanning electron microscopy (all modes) AES = Auger electron spectroscopy LEED = low energy electron diffraction RHEED = reflection high energy electron diffraction ESD = electron stimulated desorption X(U)PS = X-ray (UV) photoelectron spectroscopy ELS = electron loss spectroscopy RBS = Rutherford back scattering LEIS = low energy ion scattering SIMS = secondary ion mass spectrometry INS = ion neutralization spectroscopy.

See other pages where Mass spectrometry neutral loss scan mode is mentioned: [Pg.517]    [Pg.310]    [Pg.90]    [Pg.272]    [Pg.106]    [Pg.928]    [Pg.759]    [Pg.329]    [Pg.450]    [Pg.580]    [Pg.254]    [Pg.648]    [Pg.134]    [Pg.273]    [Pg.379]    [Pg.105]    [Pg.266]    [Pg.207]    [Pg.297]   
See also in sourсe #XX -- [ Pg.55 ]




SEARCH



Mass scan

Mass scanning

Neutral loss

Neutral loss scanning

Neutral-loss scan mode

SCAN mode

Scanning modes

Scanning, mass spectrometry

© 2024 chempedia.info