Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Maillard reactions beef flavor

In addition to simple model systems, more complex systems which are closer to actual foodstuffs have been used to investigate the formation of flavor chemicals in the Maillard reaction. Sixty-three volatile chemicals were isolated and identified from starch heated with glycine (4). When beef fat was used as a carbonyl compound precursor in a Maillard model system with glycine, 143 volatile chemicals were identified (6). These included fifteen n-alkanes, twelve n-alkenes, thirteen n-aldehydes, thirteen 2-ketones, twelve n-alcohols, and eleven n-alkylcyclohexanes. Recently, the effect of lipids and carbohydrates on the thermal generation of volatiles from commercial zein was studied (7). [Pg.135]

Many individual flavor chemicals which were isolated and identified from Maillard "side reactions" have been reported in the patent literature. It is evident from these patents that much work has been done to glean specific flavor chemicals from the complexities of the Maillard reaction. 3-Furyl alkyl sulfide, disulfide, and 0-chalcogenalkyl sulfide derivatives are claimed to provide bloody, meaty, and roasted notes to beef broth and beef products (64-66). 3-Methylcyclopent-2-en-l-one was declared for its flavor eiiEancement of beef bouillon (67). Firmenich claimed 2,6-dimethyl-2-octenal and its analogs as possessing meat flavor qualities (68). A method to produce disulfides for application to meat and savory flavors was patented (69). [Pg.417]

The flavor industry has introduced, over the years, methods of developing meat flavors by processing appropriate precursors under carefully controlled reaction conditions. As a result, meat flavors having a remarkably genuine meat character in the beef, chicken and pork tonalities are available for the food industry. It has repeatedly been stated that the Maillard reaction is particularly important for the formation of meat flavors. However, of the 600 volatile compounds isolated from natural beef aroma, only 12% of them find their origin in sugar/amino acid interactions and of these 70% are pyrazine derivatives. [Pg.433]

Sulfur Compounds of Beef Flavor. Methional, which results from the degradation of methionine, is an important contributor to flavor in meat. Thiolanes, formed during the cooking of beef, have peculiar oniony flavors that also augment the quality of the meaty flavor. Thiophenes and thiofurans are also important to meaty flavors. Sulfides, such as methyl sulfide, are oxidized to methyl sulfoxide and methyl sulfone. Condensation reactions of Maillard browning products also result in thiazoles such as benzothiazole, an important component of meat flavor. [Pg.454]

This interdependency of reactions has been most studied in meats, or model meat reaction systems [42,72,81]. Wasserman [82] was amongst the first to find that the lean portion of the meat supplied the meaty, brothy character and the fat provided the species character much of which is due to lipid/Maillard interactions. This knowledge has long been used in the manufacture of process products (meat flavors). Meat process flavors contain approximately the same sugars and amino acids for the basic meat flavor but contain different fats to give the unique pork, beef, or chicken notes. [Pg.122]


See other pages where Maillard reactions beef flavor is mentioned: [Pg.74]    [Pg.181]    [Pg.312]    [Pg.433]    [Pg.449]    [Pg.13]    [Pg.190]    [Pg.386]    [Pg.330]    [Pg.597]    [Pg.463]    [Pg.170]    [Pg.175]   
See also in sourсe #XX -- [ Pg.12 ]




SEARCH



Beef

Flavor Maillard reactions

Flavor reactions

Maillard

Maillard flavors

Maillard reactions

© 2024 chempedia.info