Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Magnesium solar abundance

Natural isotopes of magnesium and their solar abundances... [Pg.119]

The concentrations of four typical moderately volatile elements—manganese, sodium, selenium, and zinc—in the various classes of chondritic meteorites are shown in Figure 12, where elements are normalized to magnesium and CI-chondrites. Again there is excellent agreement between solar abundances and Cl-meteorites. A characteristic feature of the chemistry of carbonaceous chondrites is the simultaneous depletion of sodium and manganese in all types of carbonaceous chondrites, except Cl. Ordinary and enstatite chondrites are not or only slightly... [Pg.730]

As can be seen in Fig. 2-1 (abundance of elements), hydrogen and oxygen (along with carbon, magnesium, silicon, sulfur, and iron) are particularly abundant in the solar system, probably because the common isotopic forms of the latter six elements have nuclear masses that are multiples of the helium (He) nucleus. Oxygen is present in the Earth s crust in an abundance that exceeds the amount required to form oxides of silicon, sulfur, and iron in the crust the excess oxygen occurs mostly as the volatiles CO2 and H2O. The CO2 now resides primarily in carbonate rocks whereas the H2O is almost all in the oceans. [Pg.112]

Another isotopic anomaly, discovered in Allende inclusions, concerns magnesium, for which an intrinsically low abundance in these samples makes its isotope ratios sensitive to small effects. Certain of the inclusions show a correlation between 26Mg and 27 Al, indicating an origin of excess 26Mg from radioactive decay of 26 A1 (mean life 1 Myr), the existence of which had previously been postulated as a heat source for meteorite parent bodies (Fig. 3.32). Other short-lived activites that seem to have been alive in the early Solar System are 10Be (mean life 2.2 Myr) from a correlation of 10B with 9Be, and 41Ca (mean life 0.15 Myr) from a correlation of... [Pg.96]

Even nuclei, and in particular the class of a nuclei (oxygen, magnesium, silicon, calcium), are the basic products of nucleosynthesis in high-mass stars. They are abundantly present in the ashes of SNll events, where the cx/iron ratio is about three times the solar value. The amounts of even elements ejected by explosion of a high-mass star are, to the first approximation, independent of the star s initial metallicity. [Pg.181]

Among the elements that make up rocks and minerals, silicon, magnesium, and iron are of almost equal abundance followed by sulfur, aluminum, calcium, sodium, nickel, and chromium. Two of the most common minerals in meteorites and in the terrestrial planets are olivine ((Mg,Fe)2Si04) and pyroxene ((Mg,Fe,Ca)Si03). The composition obtained by averaging these two minerals is very similar to the bulk solar system composition, so it is really no surprise that they are so abundant. [Pg.103]

Planetary differentiation is a fractionation event of the first order, and it involves both chemical fractionation and physical fractionation processes. Planetary crusts are enriched in elements that occur in silicate minerals that melt at relatively low temperatures. Recall from Chapter 4 that the high solar system abundances of magnesium, silicon, and iron mean that the silicate portions of planetesimals and planets will be dominated by olivine and pyroxenes. Partial melting of sources dominated by olivine and pyroxene ( ultramafic rocks ) produces basaltic liquids that ascend buoyantly and erupt on the surface. It is thus no surprise that most crusts are made of basalts. Remelting of basaltic crust produces magmas richer in silica, eventually resulting in granites, as on the Earth. [Pg.218]

From the isotopic decomposition of normal magnesium one finds that the mass-24 isotope, 24Mg, is the most abundant of the three stable Mg isotopes. It is 79.0% of all Mg isotopes. Using the total abundance of elemental Mg = 1.074 x 106 Per million silicon atoms in solar-system matter, this isotope has... [Pg.119]

Spectroscopy allows one to see not only the elements in the gas phase, but also those in the dust grains. Using bright X-ray binaries as background sources, Ueda et al. (2005) were able to determine the total abundances of the elements in the diffuse ISM and found that most of them are approximately solar, with the exception of oxygen. From the details of the X-ray absorption spectra it could be determined to some extent what fraction of the elements were in the solid phase and also to a lesser extent the lattice structure could be determined. From this, they found the silicates to be predominantly rich in magnesium and poor in iron, in agreement with the infrared absorption spectroscopic study of the diffuse ISM by Min et al. (2007). [Pg.163]

The sun is not a "perfect" radiator, nor does it have uniform composition. The sun is composed of about 92% hydrogen, 7.8% helium. The remaining 0.2% of the sun is made up of about 60 other elements, mainly metals such as iron, magnesium, and chromium. Carbon, silicon, and most other elements are present as well.1 The inte raction of the atoms and ions of these elements with the radiation created by the annihilation of matter deep within the sun modifies and adds structure to the solar spectral distribution of energy. Astrophysicists such as Kurucz have used quantum calculations and the relative abundance of elements in the sun to compute the theo retical spectral distribution from first principles.5 Figure 1 shows a plot of the Kurucz computed spectral distribution at very high resolution (0.005 nanometer at UV) as well as an inset showing much lower resolution (0.5 nanometer in UV to 5 nm in IR) plot. [Pg.22]

Based on the bulk chemistry, IDPs are divided into two groups (i) micrometer-sized chondritic particles and (ii) micrometer-sized nonchondritic particles. A particle is defined as chondritic when magnesium, aluminum, silicon, sulfur, calcium, titanium, chromium, manganese, iron, and nickel occur in relative proportions similar (within a factor of 2) to their solar element abundances, as represented by the Cl carbonaceous chondrite composition (Brownlee et al., 1976). Chondritic IDPs differ significantly in form and texture from the components of known carbonaceous chondrite groups and are highly enriched in carbon relative to the most carbon-rich Cl carbonaceous chondrites (Rietmeijer, 1992 Thomas et al., 1996 Rietmeijer, 1998, 2002). [Pg.104]


See other pages where Magnesium solar abundance is mentioned: [Pg.53]    [Pg.709]    [Pg.5]    [Pg.233]    [Pg.39]    [Pg.26]    [Pg.171]    [Pg.282]    [Pg.372]    [Pg.261]    [Pg.64]    [Pg.101]    [Pg.284]    [Pg.289]    [Pg.391]    [Pg.391]    [Pg.176]    [Pg.23]    [Pg.91]    [Pg.118]    [Pg.122]    [Pg.123]    [Pg.125]    [Pg.127]    [Pg.131]    [Pg.131]    [Pg.285]    [Pg.9]    [Pg.102]    [Pg.45]    [Pg.48]    [Pg.61]    [Pg.132]    [Pg.145]    [Pg.207]    [Pg.217]    [Pg.433]    [Pg.507]   
See also in sourсe #XX -- [ Pg.11 ]




SEARCH



Abundances solar

Magnesium abundance

© 2024 chempedia.info