Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

M3Q7 Cluster Complexes

The first step consists in the attack of a proton on the W-H bond to yield a labile dihydrogen intermediate (Eq. (3)) that rapidly releases H2 to form a coordi-natively unsaturated complex (Eq. (4)). This complex adds water in the next step to form an aqua complex (Eq. (5)) that completes the reaction by substituting the coordinated water by the X anion (Eq. (6)). Steps (3)-(6) are repeated for each W-H bond and the factor of 3 in the rate constants appears as a consequence of the statistical kinetics at the three metal centers. The rate constants for both the initial attack by the acid (ki) and water attack to the coordinatively unsaturated intermediate (k2) are faster in the sulfur complex, whereas the substitution of coordinated water (k3) is faster for the selenium compound. [Pg.113]

Kinetic studies of the hydride cluster [W3S4H3(dmpe)3] with acids in a non-coordinating solvent, i.e., dichloromethane, under the pseudo-first-order condition of acid excess, show a completely different mechanism with three kineti-cally distinguishable steps associated to the successive formal substitution of the coordinated hydrides by the anion of the acid, i.e., Ch in HCl [37]. The first two kinetic steps show a second-order dependence with the acid concentration. [Pg.113]

This is the first example of a proton transfer process to a hydride complex with a second-order dependence. Theoretical calculations indicate that the role of the HX molecules is the formation of W-H H-Cl- H-Cl adducts that convert into W-Cl, H2 and HCl2 in the rate-determining state through hydrogen complexes as transition states. [Pg.113]

The coordination of redox-active ligands such as 1,2-bis-dithiolates, to the M03Q7 cluster unit, results in oxidation-active complexes in sharp contrast with the electrochemical behavior found for the [Mo3S7Br6] di-anion for which no oxidation process is observed by cyclic voltammetry in acetonitrile within the allowed solvent window [38]. The oxidation potentials are easily accessible and this property can be used to obtain a new family of single-component molecular conductors as will be presented in the next section. Upon reduction, [M03S7 (dithiolate)3] type-11 complexes transform into [Mo3S4(dithiolate)3] type-I dianions, as represented in Eq. (7). [Pg.114]

The structure of [Mo3S4(dmit)3] (dmit=l,3-dithiole-2-thione-4,5-dithiolate) represents one of the rare examples of M3S4 clusters where each metal atom appears as pentacoordinate instead of its more common type-I structure octahedral environment [39]. Complexes [M3Q4(dmit)3] (M = Mo, W Q = S, Se) degrade in air with an almost quantitative yield and afford a series of M(V) dimers of formula [M202(//-Q)2(dmit)2] where the oxygen atoms are in a syn configuration. [Pg.114]


Synthesis and Structure of Molecular M3Q4 and M3Q7 Cluster Complexes 107 7.2... [Pg.107]

Molecular Conductors Based on M3Q7 Cluster Complexes... [Pg.115]

A systematic study of this class of compounds did not start until twenty years later and led to the preparation of a series of M3Q7X4 (M = Mo, W Q = S, Se and X = C1, Br) inorganic polymers by high-temperature reactions (ca. 350 °C) of the elements in a sealed tube [10-14]. The interest on these cluster phases was mainly motivated by their excellent role as synthons for the preparation of molecular M3Q7 and M3Q4 cluster complexes, as will be presented in this section. [Pg.107]


See other pages where M3Q7 Cluster Complexes is mentioned: [Pg.113]    [Pg.113]    [Pg.106]    [Pg.108]    [Pg.109]   


SEARCH



Cluster complexes

© 2024 chempedia.info