Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Low-temperature embedding

Fig 5 Immunogold labelling on thin sections of low-temperature embedded cell walls from 9-day old tobacco cells with JIM 5, a monoclonal antibody that recognises a relatively unesterified pectic epitope. Cell walls of elongating cells label very weakly, but material that is being secreted into the culture medium labels strongly. The old part of the wall is labelled but new wall material is not. [Pg.102]

Roos N. Freeze-substitution and other low temperature embedding methods, in Electron Microscopy in Biology—A Practical Approach (Harris JR, ed.), IRL Press, Oxford, UK, 1991, pp. 39-58. [Pg.36]

Carlemalm E, Villiger W, Hobot JA, Acetarin JD, Kellenberger E. Low temperature embedding with Lowicryl resins two new formulations and some applications. JMicrosc (Oxford) 1982b 140 55-63. [Pg.274]

Robertson, D, Monaghan, P., Clark, C., and Atherton, A. J (1992) An appraisal of low temperature embedding by progressive lowering of temperature into Lowicryl HM20 for immunocytochemical studies J Microsc. 168, 85—100... [Pg.312]

Figure 12.2. The structure of ice cream mix and ice cream. (A). Fat globules (F) in mix with crystalline fat within the globule and adsorbed casein micelles (C), as viewed by thin section transmission electron microscopy. (B). Close-up of an air bubble (A) with adsorbed fat, as viewed by low temperature scanning electron microscopy. (C). Air bubble (A) with adsorbed fat cluster (FC) that extends into the unfrozen phase, as viewed by thin section transmission electron microscopy with freeze substitution and low temperature embedding. Figure 12.2. The structure of ice cream mix and ice cream. (A). Fat globules (F) in mix with crystalline fat within the globule and adsorbed casein micelles (C), as viewed by thin section transmission electron microscopy. (B). Close-up of an air bubble (A) with adsorbed fat, as viewed by low temperature scanning electron microscopy. (C). Air bubble (A) with adsorbed fat cluster (FC) that extends into the unfrozen phase, as viewed by thin section transmission electron microscopy with freeze substitution and low temperature embedding.
Fig. 7. The effect of adsorbed protein on structure of ice-cream mix, ice cream, and melted ice cream. A-B, ice-cream mix with no surfactant and with added surfactant, respectively, as viewed by thin-section transmission electron microscopy. f= fat globule, c = casein micelle, arrow = crystalline fat, bar = 0.5 pm. See Reference 24 for methodology. C-D, ice cream with no surfactant and with added surfactant, respectively, as viewed by low-temperature scanning electron microscopy, a = air bubble, f = fat globule, bar = 4 pm. See Reference 34 for methodology. E-F, ice cream with no surfactant and with added surfactant respectively, as viewed by thin-section transmission electron microscopy with freeze substitution and low-temperature embedding. a = air bubble, f= fat globule, c = casein micelle, fc = fat cluster, bar = 1 pm. See Reference 13 for methodology. G-H, melted ice cream with no surfactant and with added surfactant respectively, as viewed by thin-section transmission electron microscopy. f= fat globule, c = casein micelle, fn = fat network, bar = 1 pm in G and 5 pm in H. See Reference 24 for methodology. Fig. 7. The effect of adsorbed protein on structure of ice-cream mix, ice cream, and melted ice cream. A-B, ice-cream mix with no surfactant and with added surfactant, respectively, as viewed by thin-section transmission electron microscopy. f= fat globule, c = casein micelle, arrow = crystalline fat, bar = 0.5 pm. See Reference 24 for methodology. C-D, ice cream with no surfactant and with added surfactant, respectively, as viewed by low-temperature scanning electron microscopy, a = air bubble, f = fat globule, bar = 4 pm. See Reference 34 for methodology. E-F, ice cream with no surfactant and with added surfactant respectively, as viewed by thin-section transmission electron microscopy with freeze substitution and low-temperature embedding. a = air bubble, f= fat globule, c = casein micelle, fc = fat cluster, bar = 1 pm. See Reference 13 for methodology. G-H, melted ice cream with no surfactant and with added surfactant respectively, as viewed by thin-section transmission electron microscopy. f= fat globule, c = casein micelle, fn = fat network, bar = 1 pm in G and 5 pm in H. See Reference 24 for methodology.
Note on equipment. Most of the commercially available instruments for low-temperature embedding or freeze-substitution do not allow for the pelleting... [Pg.170]

For low-temperature embedding, follow the manufacturer s instructions for resinisolvent exchange and polymerization (see also Newman and Hobot 1993). [Pg.255]


See other pages where Low-temperature embedding is mentioned: [Pg.352]    [Pg.118]    [Pg.33]    [Pg.207]    [Pg.236]    [Pg.80]    [Pg.104]    [Pg.172]    [Pg.248]    [Pg.257]    [Pg.248]    [Pg.256]    [Pg.263]    [Pg.270]    [Pg.286]   
See also in sourсe #XX -- [ Pg.33 ]




SEARCH



© 2024 chempedia.info