Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Loop Performance and Tuning Procedures

Noncontinuous measurements, such as those produced by the sample-and-hold circuitry of a chromatograph, can introduce significant deadtime into a loop. Also, the nature of the periodic step change in value prevents the use of derivative action in the controller. [Pg.39]

Distributed Control Systems often sample the transmitted signal at a one-second interval, sometimes faster or slower depending on the characteristics of the process response. One concern related to sample data measurement is aliasing of the signal, which can shift the observed frequency. However, at a one-second sample interval, this has seldom been a problem for all but the fastest process responses. A general rule for good performance is to make the period between scans less than one-tenth of the deadtime, or one-twentieth of the lag in the process response. [Pg.39]

The design of the valve, process, and measurement should be made such as to minimize deadtime in the loop while providing a reliable, more linear response, then the controller can be tuned to provide the best performance, with an acceptable operating margin for robustness. The PID controller is the most widespread and applicable control algorithm, which can be tuned to provide near optimal responses to load disturbances. PID is an acronym for Proportional, Integral, and Derivative modes of control. [Pg.39]

The Integral mode is sometimes referred to as reset because it continues to take action over time until the error between measurement and setpoint is eliminated. The parameter to specify this action is Integral time, which can be thought of as the length of time for the controller to repeat the initial proportional response if the error remained constant. Note that as this parameter is made smaller, the reset increases as the control action is repeated in a shorter period of time. Some controllers use an alternate parameter, Reset, that is the reciprocal of Integral time and is referred to as repeats/unit time. This latter approach is perhaps more intuitive in that as the Reset parameter is increased, there is more reset action being applied. [Pg.39]

The Derivative mode is sometimes referred to as rate because it applies control action proportional to the rate of change of its input. Most controllers use the process measurement, rather than the error, for this input in order to prevent an exaggerated response to step changes in the setpoint. Also, noise in the process measurement is attenuated by an inherent filter on the Derivative term, which has a time constant 1/8 to 1/10 of the Derivative time. Even with these considerations, process noise is a major deterrent to the use of Derivative mode. [Pg.39]


See other pages where Loop Performance and Tuning Procedures is mentioned: [Pg.39]    [Pg.39]   


SEARCH



Tuning

© 2024 chempedia.info