Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquids rigidity

The isotropy of the liquid rigidly restricts the conditional probability density f(e, e) for the cell axis to change as a result of an elementary jump. It depends only on the angle between successive directions of the field... [Pg.231]

Early studies of the photophysical radiationless processes of molecular systems were carried out on molecules in condensed media, liquids, rigid matrices, and high-pressure gases. This experimental situation introduces the complication associated with the presence of the possible occurrence of a number of different competing photophysical relaxation processes in the same molecular system in a fashion that mimics the complexity of a full photochemical reaction scheme. In order to study the primary photophysical radiationless transitions, it is optimal to consider experiments in which only the elementary individual processes of interest appear. Such investigations often involve the experimental determination of radiationless transition rates in isolated collision-free molecules. " For instance, collision-free experiments enable the consideration of the important phenomena of electronic relaxation and intramolecular vibrational redistribution. Studies on isolated molecules have greatly contributed to our... [Pg.298]

The microscopic contour of a meniscus or a drop is a matter that presents some mathematical problems even with the simplifying assumption of a uniform, rigid solid. Since bulk liquid is present, the system must be in equilibrium with the local vapor pressure so that an equilibrium adsorbed film must also be present. The likely picture for the case of a nonwetting drop on a flat surface is... [Pg.378]

Many complex systems have been spread on liquid interfaces for a variety of reasons. We begin this chapter with a discussion of the behavior of synthetic polymers at the liquid-air interface. Most of these systems are linear macromolecules however, rigid-rod polymers and more complex structures are of interest for potential optoelectronic applications. Biological macromolecules are spread at the liquid-vapor interface to fabricate sensors and other biomedical devices. In addition, the study of proteins at the air-water interface yields important information on enzymatic recognition, and membrane protein behavior. We touch on other biological systems, namely, phospholipids and cholesterol monolayers. These systems are so widely and routinely studied these days that they were also mentioned in some detail in Chapter IV. The closely related matter of bilayers and vesicles is also briefly addressed. [Pg.537]

Stillinger F 1973 Structure in aqueous solutions from the standpoint of scaled particle theory J. Solution Chem. 2 141 Widom B 1967 Intermolecular forces and the nature of the liquid state Sc/e/ ce 375 157 Longuet-Higgins H C and Widom B 1964 A rigid sphere model for the melting of argon Mol. Phys. 8 549... [Pg.557]

Typical singlet lifetimes are measured in nanoseconds while triplet lifetimes of organic molecules in rigid solutions are usually measured in milliseconds or even seconds. In liquid media where drfifiision is rapid the triplet states are usually quenched, often by tire nearly iibiqitoiis molecular oxygen. Because of that, phosphorescence is seldom observed in liquid solutions. In the spectroscopy of molecules the tenn fluorescence is now usually used to refer to emission from an excited singlet state and phosphorescence to emission from a triplet state, regardless of the actual lifetimes. [Pg.1143]

Zannoni C 1985 An internal order parameter formalism for non-rigid molecules Nuclear Magnetic Resonance of Liquid Crystals ed J W Emsiey (Dordrecht Reidel)... [Pg.2569]

VER in liquid O 2 is far too slow to be studied directly by nonequilibrium simulations. The force-correlation function, equation (C3.5.2), was computed from an equilibrium simulation of rigid O2. The VER rate constant given in equation (C3.5.3) is proportional to the Fourier transfonn of the force-correlation function at the Oj frequency. Fiowever, there are two significant practical difficulties. First, the Fourier transfonn, denoted [Pg.3041]

Consider a quantity of some liquid, say, a drop of water, that is composed of N individual molecules. To describe the geometry of this system if we assume the molecules are rigid, each molecule must be described by six numbers three to give its position and three to describe its rotational orientation. This 6N-dimensional space is called phase space. Dynamical calculations must additionally maintain a list of velocities. [Pg.12]

Irregularities such as branch points, comonomer units, and cross-links lead to amorphous polymers. They do not have true melting points but instead have glass transition temperatures at which the rigid and glasslike material becomes a viscous liquid as the temperature is raised. [Pg.1006]

Below Tg the material is hard and rigid with a coefficient of thermal expansion equal to roughly half that of the liquid. With respect to mechanical properties, the glass is closer in behavior to a crystalline solid than to a... [Pg.202]

The first of these problems involves relative motion between a rigid sphere and a liquid as analyzed by Stokes in 1850. The results apply equally to liquid flowing past a stationary sphere with a steady-state (subscript s) velocity v or to a sphere moving through a stationary liquid with a velocity -v the relative motion is the same in both cases. If the relative motion is in the vertical direction, we may visualize the slices of liquid described above as consisting of... [Pg.585]

Coefficient of Linear Thermal Expansion. The coefficients of linear thermal expansion of polymers are higher than those for most rigid materials at ambient temperatures because of the supercooled-liquid nature of the polymeric state, and this applies to the cellular state as well. Variation of this property with density and temperature has been reported for polystyrene foams (202) and for foams in general (22). When cellular polymers are used as components of large stmctures, the coefficient of thermal expansion must be considered carefully because of its magnitude compared with those of most nonpolymeric stmctural materials (203). [Pg.414]

Polymeric isocyanates or PMDI ate cmde products that vary in exact composition. The main constituents are 40—60% 4,4 -MDI the remainder is the other isomers of MDI, trimeric species, and higher molecular weight oligomers. Important product variables are functionaHty and acidity. Rigid polyurethane foams are mainly manufactured from PMDI. The so-called pure MDI is a low melting soHd that is used for high performance polyurethane elastomers and spandex fibers. Liquid MDI products are used in RIM polyurethane elastomers. [Pg.344]

Q. Single liquid drop in immiscible liquid, range rigid to fully circulating... [Pg.614]


See other pages where Liquids rigidity is mentioned: [Pg.768]    [Pg.768]    [Pg.235]    [Pg.768]    [Pg.768]    [Pg.235]    [Pg.178]    [Pg.102]    [Pg.2312]    [Pg.2543]    [Pg.2554]    [Pg.2554]    [Pg.2771]    [Pg.53]    [Pg.238]    [Pg.468]    [Pg.62]    [Pg.149]    [Pg.584]    [Pg.585]    [Pg.43]    [Pg.66]    [Pg.65]    [Pg.342]    [Pg.251]    [Pg.336]    [Pg.465]    [Pg.191]    [Pg.274]    [Pg.679]    [Pg.679]    [Pg.680]    [Pg.1467]    [Pg.1744]    [Pg.1883]    [Pg.1955]    [Pg.1989]    [Pg.325]    [Pg.43]   
See also in sourсe #XX -- [ Pg.412 ]




SEARCH



© 2024 chempedia.info