Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liquid integrated

Amplitude of controlled variable Output amplitude limits Cross sectional area of valve Cross sectional area of tank Controller output bias Bottoms flow rate Limit on control Controlled variable Concentration of A Discharge coefficient Inlet concentration Limit on control move Specific heat of liquid Integration constant Heat capacity of reactants Valve flow coefficient Distillate flow rate Limit on output Decoupler transfer function Error... [Pg.717]

Mole fraction in liquid Integral heat of solution 0.005 0.01 0.015 0.02 0.03... [Pg.1172]

Non-Newtonian Flow For isothermal laminar flow of time-independent non-Newtonian liquids, integration of the Cauchy momentum equations yields the fully developed velocity profile and flow rate-pressure drop relations. For the Bingham plastic fluid described by Eq. (6-3), in a pipe of diameter D and a pressure drop per unit length AP/L, the flow rate is given by... [Pg.13]

Let Xr2 be —t] dvjdr in Eq. (14.4.2) and solve for the velocity profile v (r) for the fully developed tube flow of a Newtonian liquid. Integrate the velocity profile over the tube cross section to relate the volumetric flow rate Q to the pressure gradient. Substitute this relationship back into Eq. (14.4.2) and evaluate the result atr — Rto obtain Eq. (14.4.10). [Pg.627]

If we vary the composition of a liquid mixture over all possible composition values at constant temperature, the equilibrium pressure does not remain constant. Therefore, if integrated forms of the Gibbs-Duhem equation [Equation (16)] are used to correlate isothermal activity coefficient data, it is necessary that all activity coefficients be evaluated at the same pressure. Unfortunately, however, experimentally obtained isothermal activity coefficients are not all at the same pressure and therefore they must be corrected from the experimental total pressure P to the same (arbitrary) reference pressure designated P. This may be done by the rigorous thermodynamic relation at constant temperature and composition ... [Pg.20]

T,K Enthalpy of Saturated Liquid, kj/mole Integral Enthalpy of Vaporization, kj/mole ... [Pg.92]

Partially vaporized feed reverses these effects. For a given separation, the feed conditions can be optimized. No attempt should be made to do this at this stage in the design, since heat integration is likely to change the optimal setting later in the design. It is usually adequate to set the feed to saturated liquid conditions. This tends to equalize the vapor rate below and above the feed. [Pg.78]

The integral A/, while expressible in terms of surface free energy differences, is defined independently of such individual quantities. A contact angle situation may thus be viewed as a consequence of the ability of two states to coexist bulk liquid and thin film. [Pg.375]

As an extension of Problem 11, integrate a second time to obtain the equation for the meniscus profile in the Neumann method. Plot this profile as y/a versus x/a, where y is the vertical elevation of a point on the meniscus (above the flat liquid surface), x is the distance of the point from the slide, and a is the capillary constant. (All meniscus profiles, regardless of contact angle, can be located on this plot.)... [Pg.380]

The heat of adsorption is an important experimental quantity. The heat evolution with each of successive admissions of adsorbate vapor may be measured directly by means of a calorimeter described by Beebe and co-workers [31]. Alternatively, the heat of immersion in liquid adsorbate of adsorbent having various amounts preadsorbed on it may be determined. The difference between any two values is related to the integral heat of adsorption (see Section X-3A) between the two degrees of coverage. See Refs. 32 and 33 for experimental papers in this area. [Pg.616]

The integral heat of adsorption Qi may be measured calorimetrically by determining directly the heat evolution when the desired amount of adsorbate is admitted to the clean solid surface. Alternatively, it may be more convenient to measure the heat of immersion of the solid in pure liquid adsorbate. Immersion of clean solid gives the integral heat of adsorption at P = Pq, that is, Qi(Po) or qi(Po), whereas immersion of solid previously equilibrated with adsorbate at pressure P gives the difference [qi(Po) differential heat of adsorption q may be obtained from the slope of the Qi-n plot, or by measuring the heat evolved as small increments of adsorbate are added [123]. [Pg.647]

Equilibration of the interface, and the establislnnent of equilibrium between the two phases, may be very slow. Holcomb et al [183] found that the density profile p(z) equilibrated much more quickly than tire profiles of nonnal and transverse pressure, f yy(z) and f jfz), respectively. The surface tension is proportional to the z-integral of Pj z)-Pj z). The bulk liquid in the slab may continue to contribute to this integral, indicatmg lack of equilibrium, for very long times if the initial liquid density is chosen a little too high or too low. A recent example of this kind of study, is the MD simulation of the liquid-vapour surface of water at temperatures between 316 and 573 K by Alejandre et al [184]. [Pg.2271]


See other pages where Liquid integrated is mentioned: [Pg.118]    [Pg.10]    [Pg.135]    [Pg.24]    [Pg.21]    [Pg.240]    [Pg.346]    [Pg.376]    [Pg.624]    [Pg.118]    [Pg.10]    [Pg.135]    [Pg.24]    [Pg.21]    [Pg.240]    [Pg.346]    [Pg.376]    [Pg.624]    [Pg.138]    [Pg.678]    [Pg.24]    [Pg.239]    [Pg.335]    [Pg.374]    [Pg.623]    [Pg.653]    [Pg.667]    [Pg.133]    [Pg.476]    [Pg.560]    [Pg.562]    [Pg.724]    [Pg.920]    [Pg.932]    [Pg.1839]    [Pg.1947]    [Pg.307]    [Pg.220]    [Pg.369]    [Pg.609]   
See also in sourсe #XX -- [ Pg.59 ]




SEARCH



Liquid integrity

© 2024 chempedia.info