Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Liouville equation, nonadiabatic quantum

In the following sections we show how the quantum-classical Liouville equation and quantum-classical expressions for reaction rates can be deduced from the full quantum expressions. The formalism is then applied to the investigation of nonadiabatic proton transfer reactions in condensed phase polar solvents. A quantum-classical Liouville-based method for calculating linear and nonlinear vibrational spectra is then described, which involves nonequilibrium dynamics on multiple adiabatic potential energy surfaces. This method is then used to investigate the linear and third-order vibrational spectroscopy of a proton stretching mode in a solvated hydrogen-bonded complex. [Pg.254]

When the quantum-classical Liouville equation is expressed in the adiabatic basis, the most difficult terms to simulate come from the off-diagonal force matrix elements, which give rise to the nonadiabatic coupling matrix elements. As described above, contributions coming from this term were computed using the momentum-jump approximation in the context of a surface-hopping scheme. [Pg.392]

PESs, and (iv) obey the principle of microreversibility. Section 3 describes in some detail the mean-field trajectory method and also discusses its connection to time-dependent self-consistent-field schemes. The surface-hopping method is considered in Sec. 4, which discusses various motivations of the ansatz as well as several variants of the implementation. Section 5 gives a brief account on the quantum-classical Liouville description and considers the possibility of an exact stochastic realization of its equation of motion. The mapping formalism, its relation to other formulations, and its quasi-classical implementation is introduced in Sec. 6. Section 7 is concerned with the semiclassical description of nonadiabatic quantum mechanics. Section 8 summarizes our results and concludes with some general remarks. [Pg.626]

As explained in the Introduction, one needs to distinguish the following kinds of surface hopping (SH) methods (i) Semiclassical theories based on a connection ansatz of the WKB wave function, " (ii) stochastic implementations of a given deterministic multistate differential equation, e.g. the quantum-classical Liouville equation, and (iii) quasiclassical models such as the well-known SH schemes of Tully and others. " In this chapter, we focus on the latter type of SH method, which has turned out to be the most popular approach to describe nonadiabatic dynamics at conical intersections. [Pg.642]


See other pages where Liouville equation, nonadiabatic quantum is mentioned: [Pg.466]    [Pg.246]    [Pg.364]    [Pg.366]    [Pg.622]    [Pg.689]    [Pg.6]    [Pg.254]    [Pg.28]   


SEARCH



Liouville equation

Quantum Liouville equation

© 2024 chempedia.info