Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Linearized theory steady-state diffusion

The theory has been verified by voltammetric measurements using different hole diameters and by electrochemical simulations [13,15]. The plot of the half-wave potential versus log[(4d/7rr)-I-1] yielded a straight line with a slope of 60 mV (Fig. 3), but the experimental points deviated from the theory for small radii. Equations (3) to (5) show that the half-wave potential depends on the hole radius, the film thickness, the interface position within the hole, and the diffusion coefficient values. When d is rather large or the diffusion coefficient in the organic phase is very low, steady-state diffusion in the organic phase cannot be achieved because of the linear diffusion field within the microcylinder [Fig. 2(c)]. Although no analytical solution has been reported for non-steady-state IT across the microhole, the simulations reported in Ref. 13 showed that the diffusion field is asymmetrical, and concentration profiles are similar to those in micropipettes (see... [Pg.382]

As our first application of the linearized theory we consider steady-state, one-dimensional diffusion. This is the simplest possible diffusion problem and has applications in the measurement of diffusion coefficients as discussed in Section 5.4. Steady-state diffusion also is the basis of the film model of mass transfer, which we shall discuss at considerable length in Chapter 8. We will assume here that there is no net flux = 0. In the absence of any total flux, the diffusion fluxes and the molar fluxes are equal = J. ... [Pg.102]

Consider the idealized picture of a mass-transfer process based on the two-film theory as shown in Figure 7.27. The partial pressure profile in the gas film is linear, as called for by steady-state diffusion, but the concentration profile in the liquid film falls below a linear measure as a result of a first-order chemical reaction removing the absorbed gas. A normal mass balance over the differential segment dz (we may assume unit area normal to the direction of diffusion) produces a familiar result ... [Pg.522]

The theories vary in the assumptions and boundary conditions used to integrate Fick s law, but all predict the film mass transfer coefficient is proportional to some power of the molecular diffusion coefficient D", with n varying from 0.5 to 1. In the film theory, the concentration gradient is assumed to be at steady state and linear, (Figure 3-2) (Nernst, 1904 Lewis and Whitman, 1924). However, the time of exposure of a fluid to mass transfer may be so short that the steady state gradient of the film theory does not have time to develop. The penetration theory was proposed to account for a limited, but constant time that fluid elements are exposed to mass transfer at the surface (Higbie, 1935). The surface renewal theory brings in a modification to allow the time of exposure to vary (Danckwerts, 1951). [Pg.82]

The SECM can be used to measure the ET kinetics either at the tip or at the substrate electrode. In the former case, the tip is positioned in a close proximity of a conductive substrate (d < a). The substrate potential is kept at a constant and sufficiently positive (or negative) value to ensure the diffusion-controlled regeneration of the mediator at its surface. The tip potential is swept linearly to obtain a steady-state voltammogram. The kinetic parameters (k°, a) and the formal potential value can be obtained by fitting such a voltammogram to the theory [Eq. (22)]. A high value of the mass transfer coefficient (m) is achieved under steady-state conditions when d rate constants (k° > 1 cm-1 s) were measured with micrometersized SECM tips [92-94]. [Pg.212]

When discussing diffusion, one inevitably needs to solve diffusion equations. The Laplace transform has proven to be the most effective solution for these differential equations, as it converts them to polynomial equations. The Laplace transform is also a powerful technique for both steady-state and transient analysis of linear time-invariant systems such as electric circuits. It dramatically reduces the complexity of the mathematical calculations required to solve integral and differential equations. Furthermore, it has many other important applications in areas such as physics, control engineering, signal processing, and probability theory. [Pg.353]

According to the theory of linear stability analysis, infinitesimally small perturbations are superimposed on the variables in the steady state and their transient behavior is studied. At this stage the difference between turbulent fluctuations and perturbations may be noted. Turbulence is the characteristic feature of the multiphase flow under consideration the mean and fluctuating quantities were given by Eq. (2). The fluctuating components result in eddy diffusivity of momentum, mass, and Reynolds stresses. The turbulent fluctuations do not alter the mean value. In contrast, the perturbations are superimposed on steady-state average values and another steady... [Pg.12]

The classical linear stability theory for a planar interface was formulated in 1964 by Mullins and Sekerka. The theory predicts, under what growth conditions a binary alloy solidifying unidirectionally at constant velocity may become morphologically unstable. Its basic result is a dispersion relation for those perturbation wave lengths that are able to grow, rendering a planar interface unstable. Two approximations of the theory are of practical relevance for the present work. In the thermal steady state, which is approached at large ratios of thermal to solutal diffusivity, and for concentrations close to the onset of instability the characteristic equation of the problem... [Pg.372]

The fllm theory is the simplest model for interfacial mass transfer. In this case it is assumed that a stagnant fllm exists near the interface and that all resistance to the mass transfer resides in this fllm. The concentration differences occur in this film region only, whereas the rest of the bulk phase is perfectly mixed. The concentration at the depth I from the interface is equal to the bulk concentration. The mass transfer flux is thus assumed to be caused by molecular diffusion through a stagnant fllm essentially in the direction normal to the interface. It is further assumed that the interface has reached a state of thermodynamic equilibrium. The mass transfer flux across the stagnant film can thus be described as a steady diffusion flux. It can be shown that within this steady-state process the mass flux will be constant as the concentration profile is linear and independent of the diffusion coefficient. Consider a gas-liquid interface, as sketched in Fig. 5.16. The mathematical problem is to formulate and solve the diffusion flux equations determining the fluxes on both sides of the interface within the two films. The resulting concentration profiles and flux equations can be expressed as ... [Pg.747]


See other pages where Linearized theory steady-state diffusion is mentioned: [Pg.149]    [Pg.510]    [Pg.1201]    [Pg.28]    [Pg.506]    [Pg.31]    [Pg.372]    [Pg.439]    [Pg.306]    [Pg.123]    [Pg.348]    [Pg.154]    [Pg.176]    [Pg.28]    [Pg.49]    [Pg.1230]    [Pg.7185]    [Pg.201]    [Pg.786]    [Pg.113]    [Pg.188]    [Pg.235]    [Pg.8]    [Pg.316]   
See also in sourсe #XX -- [ Pg.102 ]




SEARCH



Diffusion linear

Diffusion state

Diffusion theory

Linear theory

Linearized theory

Steady diffusion

Steady-state diffusivity

Steady-state theory

© 2024 chempedia.info