Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ligand effects with boron enolates

Recently, the improved chiral ethyl ketone (5)-141, derived in three steps from (5)-mandelic acid, has been evaluated in the aldol process (115). Representative condensations of the derived (Z)-boron enolates (5)-142 with aldehydes are summarized in Table 34b, It is evident from the data that the nature of the boron ligand L plays a significant role in enolate diastereoface selection in this system. It is also noteworthy that the sense of asymmetric induction noted for the boron enolate (5)-142 is opposite to that observed for the lithium enolate (5)-139a and (5>139b derived from (S)-atrolactic acid (3) and the related lithium enolate 139. A detailed interpretation of these observations in terms of transition state steric effects (cf. Scheme 20) and chelation phenomena appears to be premature at this time. Further applications of (S )- 41 and (/ )-141 as chiral propionate enolate synthons for the aldol process have appeared in a 6-deoxyerythronolide B synthesis recently disclosed by Masamune (115b). [Pg.85]

Boron enolates bearing menthol-derived chiral ligands have been found to exhibit excellent diastereo- and enantio-control on reaction with aldehydes34 and imines.35 Highly diastereo- and enantio-selective aldol additions of geometrically defined trichlorosilyl ketone enolates (31) and (32) have been achieved by promoting the reactions with chiral Lewis bases, of which (,S., S )-(33) proved to be the most effective.36 Moderate enantiomeric excesses have been achieved by using chiral ammo alcohols as catalysts for the Baylis-Hillman condensation of aldehydes with methyl vinyl ketone the unexpected pressure effect on the reaction has been rationalized.37... [Pg.334]

As previously mentioned, certain methyl ketone aldol reactions enable the stereocontrolled introduction of hydroxyl groups in a, 5-anti relationship (Scheme 9-7) [9], and this was now utilized twice in the synthesis. Hence, methyl ketones 48 and 98 were converted to their respective Ipc boron enolates and reacted with aldehydes 97 and 99 to give almost exclusively the, 5-anti aldol adducts 100 and 101, respectively (Scheme 9-34). In the case of methyl ketone 48, the j -silyl ether leads to reduced stereoinduction however, this could be boosted to >97%ds with the use of chiral ligands. In both examples, the y9-stereocenter of the aldehyde had a moderate reinforcing effect (1,3-syn), thus leading to triply matched aldol reactions. Adducts 100 and 101 were then elaborated to the spiro-acetal containing aldehyde 102 and ketone 103, respectively. [Pg.267]

Cross-coupling reactions leading to the formation of C-X (X = heteroatom) bonds catalyzed by Pd(dba)2 have been reported. Aniline derivatives have been prepared via reaction of amine nucleophiles with aryl halides in the presence of Pd(dba)2 and phosphines, especially P( Bu)3. Likewise, diaryl and aryl alkyl ethers are produced from aryl halides (Cl, Br, I) and sodium aryloxides and alkoxides under similar conditions. Conditions effective for the coupling of aryl chlorides with amines, boronic acids, and ketone enolates using an easily prepared phosphine chloride as a ligand have recently been uncovered (eq 22). The preparation of aryl siloxanes and allyl boronates via Pd(dba)2-catalyzed C-Si and C-B coupling have been reported as well. [Pg.6]


See other pages where Ligand effects with boron enolates is mentioned: [Pg.46]    [Pg.302]    [Pg.302]    [Pg.180]    [Pg.42]    [Pg.16]    [Pg.147]    [Pg.33]    [Pg.40]    [Pg.679]    [Pg.91]   
See also in sourсe #XX -- [ Pg.761 ]




SEARCH



Boron enolate

Enolization, effect

Ligand effect

Ligand effective

© 2024 chempedia.info