Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laplace transforms, kinetic equations solution

Equations (4-21) are linear first-order differential equations. We considered in detail the solution of such sets of rate equations in Section 3-2, so it is unnecessary to carry out the solutions here. In relaxation kinetics these equations are always solved by means of the secular equation, but the Laplace transformation can also be used. Let us write Eqs. (4-21) as... [Pg.141]

The initial conditions are CD = CD(0) at t = 0 and CR = 0 at t = 0. Efforts to obtain analytical solutions are tedious and unnecessary. By applying the change in concentrations (or mass) in the donor and receiver solutions with time to the Laplace transforms of Eqs. (140) and (141), the inverse of the simultaneous transformed equations can be numerically calculated with appropriate software for best estimates of a, (3, and y. It is implicit here that P Pap, Pbh and Ke are functions of protein binding. Upon application of the transmonolayer flux model to the PNU-78,517 data in Figure 32, the effective permeability coefficients from the disappearance and appearance kinetics points of view are in good quantitative agreement with the permeability coefficients determined from independent studies involving uptake kinetics by MDCK cell monolayers cultured on a flat dish... [Pg.324]

Burns and Curtiss (1972) and Burns et al. (1984) have used the Facsimile program developed at AERE, Harwell to obtain a numerical solution of simultaneous partial differential equations of diffusion kinetics (see Eq. 7.1). In this procedure, the changes in the number of reactant species in concentric shells (spherical or cylindrical) by diffusion and reaction are calculated by a march of steps method. A very similar procedure has been adopted by Pimblott and La Verne (1990 La Verne and Pimblott, 1991). Later, Pimblott et al. (1996) analyzed carefully the relationship between the electron scavenging yield and the time dependence of eh yield through the Laplace transform, an idea first suggested by Balkas et al. (1970). These authors corrected for the artifactual effects of the experiments on eh decay and took into account the more recent data of Chernovitz and Jonah (1988). Their analysis raises the yield of eh at 100 ps to 4.8, in conformity with the value of Sumiyoshi et al. (1985). They also conclude that the time dependence of the eh yield and the yield of electron scavenging conform to each other through Laplace transform, but that neither is predicted correctly by the diffusion-kinetic model of water radiolysis. [Pg.219]

They may be obtained by means of the matrix IET but only together with the kernel E(f) = F(t) specified by its Laplace transformation (3.244), which is concentration-independent. However, from the more general point of view, Eqs. (3.707) are an implementation of the memory function formalism in chemical kinetics. The form of these equations shows the essentially non-Markovian character of the reversible reactions in solution the kernel holds the memory effect, and the convolution integrals entail the prehistoric evolution of the process. In the framework of ordinary chemical kinetics S(/j = d(t), so that the system (3.707) acquires the purely differential form. In fact, this is possible only in the limit when the reaction is entirely under kinetic control. [Pg.365]

The occurrence of partial differential equations in electrochemistry is due to the variation of concentration with distance and with time, which are two independent variables, and are expressed in Fick s second law or in the convective-diffusion equation, possibly with the addition of kinetic terms. As in the resolution of any differential equation, it is necessary to specify the conditions for its solution, otherwise there are many possible solutions. Examples of these boundary conditions and the utilization of the Laplace transform in resolving mass transport problems may be found in Chapter 5. [Pg.395]

A very valuable technique, useful in the solution of ordinary and partial differential equations as well as differential delay equations, is the use of Laplace transforms. Laplace transforms (Churchill, 1972), though less familiar and somewhat more difficult to invert than their cousins, Fourier transforms, are broadly applicable and often enable us to convert differential equations to algebraic equations. For rate equations based on mass action kinetics, taking the Laplace transform affords sets of polynomial algebraic equations. For DDEs, we obtain transcendental equations. [Pg.213]

As complex reactions follow a reaction mechanism involving various elementary steps, the determination of the corresponding kinetic law involves the solution of a system of differential equations, and the complete analytical solution of these systems is only possible for the simplest cases. In slightly more complicated cases it may stiU be possible to resolve the system of corresponding differential equations using methods such as Laplace transforms or matrix methods. However, there are systems which cannot be resolved analytically, or whose... [Pg.84]


See other pages where Laplace transforms, kinetic equations solution is mentioned: [Pg.149]    [Pg.88]    [Pg.798]    [Pg.268]    [Pg.29]    [Pg.52]    [Pg.179]    [Pg.523]   


SEARCH



Equation Laplace

Equation Laplace transform

Kinetic equations

Kinetic transformation

Kinetics equations

Kinetics transformation

Kinetics, solution

LaPlace transformation equation

Laplace

Laplace equation solution

Laplace transform

Laplace transform solutions

Laplace transforms

Transformation equation

Transforms Laplace transform

© 2024 chempedia.info