Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Laplace transform, linear viscoelasticity elastic-viscoelastic correspondence

The generalized stress-strain relationships in linear viscoelasticity can be obtained directly from the generalized Hooke s law, described by Eqs. (4.85) and (4.118), by using the so-called correspondence principle. This principle establishes that if an elastic solution to a stress analysis is known, the corresponding viscoelastic (complex plane) solution can be obtained by substituting for the elastic quantities the -multiplied Laplace transforms (8 p. 509). The appUcation of this principle to Eq. (4.85) gives... [Pg.221]

One must note that the balance equations are not dependent on either the type of material or the type of action the material undergoes. In fact, the balance equations are consequences of the laws of conservation of both linear and angular momenta and, eventually, of the first law of thermodynamics. In contrast, the constitutive equations are intrinsic to the material. As will be shown later, the incorporation of memory effects into constitutive equations either through the superposition principle of Boltzmann, in differential form, or by means of viscoelastic models based on the Kelvin-Voigt or Maxwell models, causes solution of viscoelastic problems to be more complex than the solution of problems in the purely elastic case. Nevertheless, in many situations it is possible to convert the viscoelastic problem into an elastic one through the employment of Laplace transforms. This type of strategy is accomplished by means of the correspondence principle. [Pg.697]

Theret et al. [1988] analyzed the micropipette experiment with endothelial cell. The cell was interpreted as a linear elastic isotropic half-space, and the pipette was considered as an axisymmetric rigid ptmch. This approach was later extended to a viscoelastic material of the cell and to the model of the cell as a deformable layer. The solutions were obtained both analytically by using the Laplace transform and numerically by using the finite element method. Spector et al. [ 1998] analyzed the application of the micropipette to a cylindrical cochlear outer hair cell. The cell composite membrane (wall) was treated as an orthotropic elastic shell, and the corresponding problem was solved in terms of Fourier series. Recently, Hochmuth [2000] reviewed the micropipette technique applied to the analysis of the cellular properties. [Pg.1049]

Obviously, the above transformed governing equations for a linear viscoelastic material (Eqs. 9.33- 9.36) are of the same form as the governing equations for a linear elastic material (Eqs. 9.25 - 9.28) except they are in the transform domain. This observation leads to the correspondence principle for three dimensional stress analysis For a given a viscoelastic boundary value problem, replace all time dependent variables in all the governing equations by their Laplace transform and replace all material properties by s times their Laplace transform (recall, e.g., G (s) = sG(s)),... [Pg.309]


See other pages where Laplace transform, linear viscoelasticity elastic-viscoelastic correspondence is mentioned: [Pg.81]   


SEARCH



Elastic-viscoelastic correspondence

Elasticity linear

Laplace

Laplace transform

Laplace transform, linear viscoelasticity

Laplace transforms

Linear elastic

Linear transformation

Linearizing transformation

Transforms Laplace transform

© 2024 chempedia.info