Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Tetrahalides lanthanide

Answer 10.1 Early on in the series, as far as uranium, the maximum oxidation state corresponds to the total number of outer shell electrons. Uranium forms a hexachloride, in addition to the MEe also formed by Np and Pu. After uranium, neptunium forms the full range of tetrahalides, but, from plutonium onwards, the (-1-3) state dominates the chemistry of the binary halides, which strongly resemble those of the lanthanides. This may reflect decreased availability of 5f (and 6d ) electrons for bonding. As usual, F supports the highest oxidation states. [Pg.171]

The lanthanide and actinide halides remain an exceedingly active area of research since 1980 they have been cited in well over 2500 Chemical Abstracts references, with the majority relating to the lanthanides. Lanthanide and actinide halide chemistry has also been reviewed numerous times. The binary lanthanide chlorides, bromides, and iodides were reviewed in this series (Haschke 1979). In that review, which included trihalides (RX3), tetrahalides (RX4), and reduced halides (RX , n < 3), preparative procedures, structural interrelationships, and thermodynamic properties were discussed. Hydrated halides and mixed metal halides were discussed to a lesser extent. The synthesis of scandium, yttrium and the lanthanide trihalides, RX3, where X = F, Cl, Br, and I, with emphasis on the halide hydrates, solution chemistry, and aspects related to enthalpies of solution, were reviewed by Burgess and Kijowski (1981). The binary lanthanide fluorides and mixed fluoride systems, AF — RF3 and AFj — RF3, where A represents the group 1 and group 2 cations, were reviewed in a subsequent Handbook (Greis and Haschke 1982). That review emphasized the close relationship of the structures of these compounds to that of fluorite. [Pg.366]

Comparable recent detailed reviews of the actinide halides could not be found. The structures of actinide fluorides, both binary fluorides and combinations of these with main-group elements with emphasis on lattice parameters and coordination poly-hedra, were reviewed by Penneman et al. (1973). The chemical thermodynamics of actinide binary halides, oxide halides, and alkali-metal mixed salts were reviewed by Fuger et al. (1983), and while the preparation of high-purity actinide metals and compounds was discussed by Muller and Spirlet (1985), actinide-halide compounds were hardly mentioned. Raman and absorption spectroscopy of actinide tri- and tetrahalides are discussed in a review by Wilmarth and Peterson (1991). Actinide halides, reviewed by element, are considered in detail in the two volume treatise by Katzet al. (1986). The thermochemical and oxidation-reduction properties of lanthanides and actinides are discussed elsewhere in this volume [in the chapter by Morss (ch. 122)]. [Pg.367]

This chapter gives an overview on the chemistry of tetravalent lanthanide compounds, especially those of tetravalent cerium. Following a brief introduction, it covers the tetrahalides, dioxides, and other lanthanides(IV) salts. Coordination compounds of cerium in the oxidation state +4 include halogeno complexes and complexes of oxo acids, /3-diketonates and related Schiff-base complexes, as well as porphyrinates and related complexes. [Pg.313]


See other pages where Tetrahalides lanthanide is mentioned: [Pg.217]    [Pg.117]    [Pg.649]    [Pg.685]    [Pg.37]    [Pg.313]    [Pg.313]    [Pg.91]    [Pg.92]    [Pg.441]   


SEARCH



Tetrahalides

© 2024 chempedia.info