Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetics, silene reactions dimerization

The focus of the section on silene reaction kinetics is mainly on studies of bimolecular reactions of transient silene derivatives, because little absolute kinetic data exist for the reactions of stable derivatives and there have been few quantitative studies of the kinetics of unimolecular isomerizations such as ,Z-isomerization and pericyclic rearrangements, although a number of examples of such reactions are of course well known. In contrast, most of the studies of disilene reaction kinetics that have been reported have employed kinetically stable derivatives, and E,Z-isomerization has thus been fairly well characterized. The paucity of absolute rate data for unimolecular isomerizations of transient silenes and disilenes is most likely due to the fact that it is comparatively difficult to obtain reliable data of this type for transient species whose bimolecular reactions (including dimerization) are so characteristically rapid, unless the unimolecular process is itself relatively facile. Such instances are rare, at least for transient silenes and disilenes at ambient temperatures. [Pg.950]

Over the past ten years, absolute rate data have been reported on the kinetics of several bimolecular silene reactions in solution, including both head-to-tail and head-to-head dimerization the [l,2]-addition reactions of nucleophilic reagents such as water, aliphatic alcohols, alkoxysilanes, carboxylic acids and amines and the ene-addition, [2 + 2]-cycloaddition and/or [4 + 2]-cycloaddition of ketones, aldehydes, esters, alkenes, dienes and oxygen. The normal outcomes of these reactions are summarized in Scheme 1. [Pg.954]

ConUn and coworkers have smdied the kinetics of the dimerization of the silene 369 by laser flash photolysis. 369 gives in a clean reaction exclusively the linear dimer 370 (equation 103). Second-order kinetics were observed with a bimolecular rate constant of... [Pg.926]

The mechanism of substitution reactions at saturated silicon centers is well studied, regarding both kinetics and stereochemistry13,14. In contrast, addition reactions to unsaturated silicon centers, such as to disilenes and silenes, are relatively unexplored. The reason is clear suitable substrates for investigations of regio- and stereochemistry and reaction kinetics are not readily available due to inherent kinetic instability of disilenes and silenes. Kinetically stabilized disilenes and silenes are now available, but these are not always convenient for studying the precise mechanism of addition reactions. For example, stable disilenes are usually prepared by the dimerization of silylenes with bulky substituents. Therefore, it is extremely difficult to prepare unsymmetrically substituted disilenes necessary for regio- and/or stereochemical studies. [Pg.828]

Silenes of the family Me3SiR1Si=C(OSiMe3)Ad-l 137 undergo a complex silene-to-silene photoisomerization reaction90,94,96. When silenes 137 are generated by photolysis of acylsilanes 138, the isomeric silenes 139 and 140 are formed in a subsequent reaction. The reaction was followed by UV and NMR spectroscopy. The disappearance of 138 cleanly follows first-order kinetics and the overall kinetics were consistent with the transformation 138 -> 137 -> 139. 137 as well as 139 were characterized by NMR spectroscopy and, in addition, the structure of 137 was established by trapping with methanol. The identity of 139 and 140 was confirmed by the isolation of their head-to-tail dimers from which crystals, suitable for X-ray analyses, were isolated (equation 34)90. [Pg.881]

Encounters between silyl radicals in solution or in the gas phase usually result in recombination and disproportionation (45, 46). Disproportionation results in the production of silanes and highly reactive silenes. The disproportionation reaction is thermodynamically favorable because of the formation of a silicon-carbon double bond, which, although subsequently chemically reactive, is worth —39 kcal/mol (44). For pentamethyldisilanyl radicals, disproportionation is kinetically competitive with radical dimerization (46). In an earlier study, Boudjouk and co-workers (47) demonstrated conclusively by isotopic substitution and trapping that the silyl radicals generated by photolysis undergo disproportionation, as well as, presumably, dimerization (Scheme I). In deuterated methanol, the silanes produced were predominantly undeuterated, whereas methoxymethyldiphenylsilane was extensively deuterated in the a position. The results of these experiments strongly implicated the substituted silene produced by disproportionation. [Pg.424]

Thus, a whole series of cases is now known. As the bulkiness of the substituents increases, the dimerization slows down, but the dimer is still more stable than the monomer (kinetic stabilization). As it increases further, the two forms are of comparable free energy since the dimer can form only long and weak new bonds, and finally, the monomer becomes the stable form relative to the dimer as formation of new bonds by dimerization becomes totally unprofitable (thermodynamic stabilization) the silene may of course still be thermodynamically unstable with respect to other types of reactions. [Pg.1100]


See other pages where Kinetics, silene reactions dimerization is mentioned: [Pg.926]    [Pg.926]    [Pg.340]    [Pg.926]    [Pg.90]    [Pg.2594]    [Pg.108]    [Pg.120]    [Pg.39]    [Pg.231]    [Pg.954]    [Pg.963]    [Pg.38]    [Pg.122]    [Pg.1091]   
See also in sourсe #XX -- [ Pg.108 ]




SEARCH



Dimerization kinetics

Dimerization reactions

Dimerization silenes

Kinetics, silene reactions

Silenes

Silenes kinetics

Silenes reactions

© 2024 chempedia.info