Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Kinetic data representation techniques

The development of an adequate mathematical model representing a physical or chemical system is the object of a considerable effort in research and development activities. A technique has been formalized by Box and Hunter (B14) whereby the functional form of reaction-rate models may be exploited to lead the experimenter to an adequate representation of a given set of kinetic data. The procedure utilizes an analysis of the residuals of a diagnostic parameter to lead to an adequate model with a minimum number of parameters. The procedure is used in the building of a model representing the data rather than the postulation of a large number of possible models and the subsequent selection of one of these, as has been considered earlier. That is, the residual analysis of intrinsic parameters, such as Cx and C2, will not only indicate the inadequacy of a proposed model (if it exists) but also will indicate how the model might be modified to yield a more satisfactory theoretical model. [Pg.147]

It is hoped that the more advanced reader will also find this book valuable as a review and summary of the literature on the subject. Of necessity, compromises have been made between depth, breadth of coverage, and reasonable size. Many of the subjects such as mathematical fundamentals, statistical and error analysis, and a number of topics on electrochemical kinetics and the method theory have been exceptionally well covered in the previous manuscripts dedicated to the impedance spectroscopy. Similarly the book has not been able to accommodate discussions on many techniques that are useful but not widely practiced. While certainly not nearly covering the whole breadth of the impedance analysis universe, the manuscript attempts to provide both a convenient source of EK theory and applications, as well as illustrations of applications in areas possibly u amiliar to the reader. The approach is first to review the fundamentals of electrochemical and material transport processes as they are related to the material properties analysis by impedance / modulus / dielectric spectroscopy (Chapter 1), discuss the data representation (Chapter 2) and modeling (Chapter 3) with relevant examples (Chapter 4). Chapter 5 discusses separate components of the impedance circuit, and Chapters 6 and 7 present several typical examples of combining these components into practically encountered complex distributed systems. Chapter 8 is dedicated to the EIS equipment and experimental design. Chapters 9 through 12... [Pg.1]


See other pages where Kinetic data representation techniques is mentioned: [Pg.17]    [Pg.184]    [Pg.35]    [Pg.187]    [Pg.326]    [Pg.2218]    [Pg.458]    [Pg.458]    [Pg.379]    [Pg.473]    [Pg.1347]    [Pg.335]    [Pg.271]    [Pg.285]   


SEARCH



Kinetic representation

Kinetic techniques

Kinetics techniques

© 2024 chempedia.info