Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ketocarbenes rearrangement

In this review an attempt is made to discuss all the important interactions of highly reactive divalent carbon derivatives (carbenes, methylenes) and heterocyclic compounds and the accompanying molecular rearrangements. The most widely studied reactions have been those of dihalocarbenes, particularly dichlorocarbene, and the a-ketocarbenes obtained by photolytic or copper-catalyzed decomposition of diazo compounds such as diazoacetic ester or diazoacetone. The reactions of diazomethane with heterocyclic compounds have already been reviewed in this series. ... [Pg.57]

The diazo ketone 3, when treated with silver oxide as catalyst, decomposes into ketocarbene 5 and dinitrogen Na. This decomposition reaction can also be achieved by heating or by irradiation with uv-light. The ketocarbene undergoes a Wolff rearrangement to give a ketene 6 ... [Pg.17]

The ketocarbene 4 that is generated by loss of Na from the a-diazo ketone, and that has an electron-sextet, rearranges to the more stable ketene 2 by a nucleophilic 1,2-shift of substituent R. The ketene thus formed corresponds to the isocyanate product of the related Curtius reaction. The ketene can further react with nucleophilic agents, that add to the C=0-double bond. For example by reaction with water a carboxylic acid 3 is formed, while from reaction with an alcohol R -OH an ester 5 is obtained directly. The reaction with ammonia or an amine R -NHa leads to formation of a carboxylic amide 6 or 7 ... [Pg.301]

The intermediacy of a ketocarbene species 4 is generally accepted for the thermal or photochemical Wolff rearrangement oxirenes 8 that are in equilibrium with ketocarbenes, have been identified as intermediates ... [Pg.302]

The photolysis of o-quinone diazides was carefully investigated by Stis in 1944, many years before the development of photoresists. Scheme 10-102 shows the photolysis sequence for the diazoquinone 10.75 formed in the diazotization of 2-amino-1-naphthol. The product of the photolytic step is a ketocarbene (10.76), which undergoes a Wolff rearrangement to a ketene (10.77). In the presence of water in-dene-3-carboxylic acid (10.78) is formed this compound is highly soluble in water and can be removed in the development step. The mechanism given in Scheme 10-102 was not postulated as such by Stis, because in 1944 ketocarbenes were unknown (for a mechanistic discussion of such Wolff rearrangements see review by Zollinger, 1995, Sec. 8.6, and Andraos et al., 1994). [Pg.284]

Tsuda and Oikawa (1989) investigated the photolysis of the 1,2-isomer of 10.89 (1,2-benzoquinone diazide) by means of MINDO/3 molecular orbital calculations with configurational interaction. These authors came to the conclusion that no ketocarbene of the type of 10.90 is formed, but that the rearrangement into the cyclopentadienyl ketene 10.94 is a concerted reaction in which the elimination of nitrogen and the rearrangement take place simultaneously. In the opinion of the present author the theoretical result for 1,2-quinone diazide is not necessarily in contradiction to the experimental investigations of Sander, Yankelevich et al., and Nakamura et al., as the reagents used were not exactly the same. [Pg.288]

When the Wolff rearrangement is carried out photochemically, the mechanism is basically the same, but another pathway can intervene. Some of the ketocarbene orieinallv formed can undergo a carbene-carbene rearrangement, through an oxi-... [Pg.1406]

Oxazole formation can be envisaged as proceeding by three possible pathways 1,3-dipolar cycloaddition of a free ketocarbene to the nitiile (Path A), the formation and subsequent 1,5-cyclisation of a nitrile ylide (Path B) or the formation and subsequent rearrangement of a 2-acyl-2//-azirine (Path C) (Scheme 9). [Pg.4]

The second reaction mode is rearrangement of the ketocarbene to a ketene. In the presence of a C—C double bond this species reacts further via an intramolecular photocycloaddition (cf. chapter 4.3.3), as shown in (2.23) 238). [Pg.27]

The photolysis of cyclic diazo ketones in hydroxylic solvents leads to ring contracted carboxylic acid derivatives via this ketocarbene -> ketene rearrangement. Examples of such reactions are given in (2.24)239) and (2.25) 240). In this last example a photoequilibrium between the diazo ketone and its valence isomer, a diazirine, has been observed, both products then eliminating nitrogen to afford the cyclobutane carboxylic acid. [Pg.28]

In the list of diazoketones studied by us95 mostly derivatives were included which have in solution no or only a small tendency for a Wolff rearrangement. Nevertheless we found not a single diazoketone 71 which enabled us to identify a ketocarbene 72, only the corresponding ketenes 73 could be detected. The same observation was made when we studied in collaboration with Yannoni et al." the photochemically induced deazotation of l-diazo-2-propanone in an organic matrix at 77 K, using 13C CPMAS NMR spectroscopy as the analytical tool. [Pg.132]

An a-diazo ketone 1 can decompose to give a ketocarbene, which further reacts by migration of a group R to yield a ketene 2. Reaction of ketene 2 with water results in formation of a carboxyhc acid 3. The Woljf rearrangement is one step of the Arndt-Eistert reaction. Decomposition of diazo ketone 1 can be accomplished thermally, photochemically or catalytically as catalyst amorphous silver oxide is commonly used ... [Pg.301]

Photochemical or thermal extrusion of molecular nitrogen from ot-diazocarbonyl compounds generates a-carbonylcarbenes. These transient species possess a resonance contribution from a 1,3-dipolar (303, Scheme 8.74) or 1,3-diradical form, depending on their spin state. The three-atom moiety has been trapped in a [3 + 2] cycloaddition fashion, but this reaction is rare because of the predominance of a fast rearrangement of the ketocarbene into a ketene intermediate. There are a steadily increasing number of transition metal catalyzed reactions of diazocarbonyl compounds with carbon-carbon and carbon-heteroatom double bonds, that, instead of affording three-membered rings, furnish hve-membered heterocycles which... [Pg.604]

Photolysis of the diazocompound 171 caused ring contraction to the pyrazolo[3,2-c]-s-triazole (172) via rearrangement of the first-formed a-ketocarbene and hydrolysis of an intermediate ketene.161... [Pg.221]

Ketocarbenes (1) are usually generated from the corresponding diazo compounds (3).s Other sources which are occasionally used are a,a-dibromo compounds (4),9 sulfur ylides (5)10 and iodonium ylides (6 Scheme 2).11 The thermal or photochemical decomposition of diazo compounds in the presence of ir-systems is often complicated by indiscriminate side reactions, such as Wolff rearrangements,12 C—H insertions and hydride migrations. To avoid such problems, the use of metal-catalyzed decomposition of diazo compounds is generally preferred.1 2... [Pg.1032]


See other pages where Ketocarbenes rearrangement is mentioned: [Pg.562]    [Pg.565]    [Pg.562]    [Pg.565]    [Pg.126]    [Pg.193]    [Pg.1407]    [Pg.2]    [Pg.23]    [Pg.96]    [Pg.308]    [Pg.25]    [Pg.131]    [Pg.135]    [Pg.173]    [Pg.174]    [Pg.658]    [Pg.193]    [Pg.1085]    [Pg.12]    [Pg.126]    [Pg.193]    [Pg.232]   
See also in sourсe #XX -- [ Pg.565 ]

See also in sourсe #XX -- [ Pg.565 ]

See also in sourсe #XX -- [ Pg.565 , Pg.566 ]

See also in sourсe #XX -- [ Pg.97 , Pg.565 ]




SEARCH



Ketocarbene

Ketocarbenes

Ketocarbenes Wolff rearrangement

Rearrangement, of: (cont ketocarbenes

© 2024 chempedia.info