Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Isomeric ions, reactive probing

REACTIVE PROBING OF THE POTENTIAL ENERGY SURFAC ISOMERIC IONS... [Pg.81]

When isomeric ions were produced by ternary association in the flow tube, thus allowing the potential surface to be accessed, the chemistry was more complicated. The gas with which the ions associated was added upstream and sufficient time was allowed for the association reaction to proceed before the reactant gas was added. When the associated ions are initially produced, they will be stable against dissociation if ternary collisions with the He remove sufficient energy to take them below the dissociation limits. However, they will still be internally excited and this excitation needs to be removed before the reactivity is probed. Again, the bulk of the evidence suggests that this de-excitation has occurred before the reactant gas is added. In a few cases there is some indication of residual excitation (see Section... [Pg.88]

In the following sections, studies of isomeric ions are reported in which the ions are reactively probed. Where calculations are available, information on potential energy surfaces is given. This is usually the structure of the stable isomeric forms and transition states and their relative energies thus only points on the potential surface are known. The detailed form of the potential surface is almost never available nor is the connectivity between the various states usually established theoretically (chemical intuition is often used to connect the states). Pertinent experimental data on CID and metastable ions, isomers produced in binary reactions, and potential surfaces probed by binary reactions (with the excited isomeric ion as the reaction intermediate) are also given. [Pg.89]

The isomeric forms of C2HsO+ have also been probed reactivity in a SIFT by Fairley et al.71 The rate coefficients and product ions for the reactions studied are summarized in Table 4. By inspection of this table, it can be seen that the three experimentally accessible isomeric forms all react differently showing that they are all independent as would be expected from the potential surface. Thus, this is an example where reactivity can distinguish between isomers, whereas CID did not distinguish between CH3CHOH+ and (CH2)2OH+. As stated at the beginning of this... [Pg.104]

A reaction of particular relevance with respect to applied catalysis is the oxidative dehydrogenation (ODH) of hydrocarbon by VmOn ions according to reaction 2, which involves a two-electron reduction of the cluster. By means of a systematic study of the reactions of various YmOn ions as well as the related oxo-vanadium hydroxides VmO H+ ions with a set of C4-hydrocarbons, it was demonstrated recently that the ODH activity of the cluster ions shows a clear correlation with the formal valence of vanadium in the cluster ions with a maximum reactivity for formal vanadium (V) (Fig. 3) [84]. In such a kind of reactivity screening, it is essential to include more than a single reagent as a probe for the reactivity of the different ions in order to reduce interferences by kinetic barriers of one particular combination of neutral and ionic reactants [85]. Accordingly, the sums of the relative rate constants for the ODH reactions of the four different butenes are considered and normalized to the most reactive ion studied, which turns out to be the formally pure vanadium (V) compoimd In addition to isomeric... [Pg.19]


See other pages where Isomeric ions, reactive probing is mentioned: [Pg.82]    [Pg.83]    [Pg.85]    [Pg.87]    [Pg.89]    [Pg.91]    [Pg.93]    [Pg.95]    [Pg.97]    [Pg.99]    [Pg.101]    [Pg.103]    [Pg.105]    [Pg.107]    [Pg.109]    [Pg.113]    [Pg.115]    [Pg.117]    [Pg.118]    [Pg.119]    [Pg.121]    [Pg.123]    [Pg.20]    [Pg.20]    [Pg.20]    [Pg.234]    [Pg.51]    [Pg.182]    [Pg.332]    [Pg.86]    [Pg.1028]    [Pg.1041]    [Pg.1042]    [Pg.618]    [Pg.277]    [Pg.186]   


SEARCH



Ion probes

Isomeric ions, reactive probing potential energy surfaces

Isomerization reactivity

Reactivity probing

© 2024 chempedia.info