Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron coordination numbers

Table 1 Surface energy" and iron coordination number on pyrite surfaces. Table 1 Surface energy" and iron coordination number on pyrite surfaces.
Iron hahdes react with haHde salts to afford anionic haHde complexes. Because kon(III) is a hard acid, the complexes that it forms are most stable with F and decrease ki both coordination number and stabiHty with heavier haHdes. No stable F complexes are known. [FeF (H20)] is the predominant kon fluoride species ki aqueous solution. The [FeF ] ion can be prepared ki fused salts. Whereas six-coordinate [FeCy is known, four-coordinate complexes are favored for chloride. Salts of tetrahedral [FeCfy] can be isolated if large cations such as tetraphenfyarsonium or tetra alkylammonium are used. [FeBrJ is known but is thermally unstable and disproportionates to kon(II) and bromine. Complex anions of kon(II) hahdes are less common. [FeCfy] has been obtained from FeCfy by reaction with alkaH metal chlorides ki the melt or with tetraethyl ammonium chloride ki deoxygenated ethanol. [Pg.436]

The distinction between the first member of the group and the two heavier members, which was seen to be so sharp in the early groups of transition metals, is much less obvious here. The only unsubstituted, discrete oxoanions of the heavier pair of metals are the tetrahedral [Ru 04] and [Ru 04]. This behaviour is akin to that of iron or, even more, to that of manganese, whereas in the osmium analogues the metal always increases its coordination number by the attachment of extra OH ions. If RUO4 is dissolved in cold dilute KOH, or aqueous K2RUO4 is oxidized by chlorine, virtually black crystals of K[Ru 04] ( permthenate ) are deposited. These are unstable unless dried and are reduced by water, especially if alkaline, to the orange... [Pg.1082]

Table 26.2 also reveals a diminished tendency on the part of these elements to form compounds of high coordination number when compared with the iron group and, apart from [Co(N03)4], a coordination number of 6 is rarely exceeded. There is also a marked reluctance to form oxoanions (p. 1118). This is presumably because their formation requires the donation of n electrons from the oxygen atoms to the metal and the metals become progressively... [Pg.1116]

Iron crystallizes in a bcc structure. The atomic radius of iron is 124 pm. Determine (a) the number of atoms per unit cell (b) the coordination number of the lattice (c) the length of the side of the unit cell. [Pg.329]

First isolated from D. desulfuricans (28), desulfoferrodoxin (Dfe) was also isolated from D. vulgaris (29). D is a 28-kDa homodimer that contains two monomeric iron centers per protein. These iron centers were extensively characterized by UV/visible, EPR, resonance Raman, and Mossbauer spectroscopies (30). The data obtained were consistent with the presence of one Dx-like center (center I) and another monomeric iron center with higher coordination number (penta or hexacoordinate), with 0/N ligands and one or two cysteine residues (center II). Comparison of known Dfx sequences led to the conclusion that only five cysteines were conserved, and that only one of them could be a ligand of center II (31). [Pg.366]

Fig. 6. A schematic view of the [3Fe-4S] Emd [4Fe-4S] cores, as versatile structures. The absence of one site leads to the formation of a [3Fe-4S] core. The cubane structure can incorporate different metals (in proteins, M = Fe, Co, Zn, Cd, Ni, Tl, Cs), and S, N, O may be coordinating atoms from hgands (Li). The versatihty csm be extended to higher coordination number at the iron site and a water molecule can even be a ligand, exchangeable with substrate (as in the case of aconitase (,87)). The most characteristic binding motifs are schematically indicated, for different situations proteins accommodating [3Fe-4S], [4Fe-4S], [3Fe-4S] + [4Fe-4S], and [4Fe-4S] -I- [4Fe-4S] clusters. A disulfide bridge may replace a cluster site (see text). Fig. 6. A schematic view of the [3Fe-4S] Emd [4Fe-4S] cores, as versatile structures. The absence of one site leads to the formation of a [3Fe-4S] core. The cubane structure can incorporate different metals (in proteins, M = Fe, Co, Zn, Cd, Ni, Tl, Cs), and S, N, O may be coordinating atoms from hgands (Li). The versatihty csm be extended to higher coordination number at the iron site and a water molecule can even be a ligand, exchangeable with substrate (as in the case of aconitase (,87)). The most characteristic binding motifs are schematically indicated, for different situations proteins accommodating [3Fe-4S], [4Fe-4S], [3Fe-4S] + [4Fe-4S], and [4Fe-4S] -I- [4Fe-4S] clusters. A disulfide bridge may replace a cluster site (see text).
Mapsi et al. [16] reported the use of a potentiometric method for the determination of the stability constants of miconazole complexes with iron(II), iron(III), cobalt(II), nickel(II), copper(II), and zinc(II) ions. The interaction of miconazole with the ions was determined potentiometrically in methanol-water (90 10) at an ionic force of 0.16 and at 20 °C. The coordination number of iron, cobalt, and nickel was 6 copper and zinc show a coordination number of 4. The values of the respected log jSn of these complexes were calculated by an improved Scatchard (1949) method and they are in agreement with the Irving-Williams (1953) series of Fe2+ < Co2+ < Ni2 < Cu2+ < Zn2+. [Pg.38]

The oxidation state of the central iron ions in the neutral species [FeL], as well as their monocation and dicationic oxidation products, [Fe(L )]+ and [Fe(L )]2+, are amenable to direct measurement by Mossbauer spectroscopy where the isomer shift gives direct information for the dn electron configuration, provided that the coordination number and the nature of the donor atoms are invariant. Frozen acetonitrile solutions of the above 57Fe enriched species have been investigated by this technique (147). [Pg.185]

Oxide ratio, 18 815 Oxides, 16 598 acidic, 22 190-191 bond strengths and coordination numbers of, 22 570t diorganotin, 24 819 glass electrodes and, 14 28 gold, 22 707 iron, 14 541-542 lead, 14 786-788 manganese, 15 581-592 nickel, 27 106-108 niobium, 27 151 plutonium, 29 688-689 in perovskite-type electronic ceramics, 14 102... [Pg.662]

The oxide surfaces prepared by condensation and polymerization of hydroxo metal ions (see Schneider, 1988 on iron(HI) hydrolysis) usually have lower coordination numbers than bulk oxide ions of the surface hydroxyles. Often the co-ordinatively unsaturated Mn+ site behaves like a Lewis acid and the coordina-tively unsaturated O2 ion is more basic than the bulk ions ... [Pg.39]


See other pages where Iron coordination numbers is mentioned: [Pg.37]    [Pg.362]    [Pg.37]    [Pg.362]    [Pg.252]    [Pg.433]    [Pg.433]    [Pg.428]    [Pg.262]    [Pg.394]    [Pg.441]    [Pg.775]    [Pg.94]    [Pg.58]    [Pg.88]    [Pg.151]    [Pg.431]    [Pg.433]    [Pg.443]    [Pg.110]    [Pg.52]    [Pg.61]    [Pg.153]    [Pg.217]    [Pg.154]    [Pg.155]    [Pg.331]    [Pg.371]    [Pg.750]    [Pg.122]    [Pg.257]    [Pg.148]    [Pg.119]    [Pg.197]    [Pg.212]    [Pg.241]    [Pg.17]    [Pg.30]    [Pg.110]    [Pg.71]   
See also in sourсe #XX -- [ Pg.18 ]




SEARCH



Coordination number

Iron complexes coordination numbers

Iron coordination

Iron oxide coordination number

© 2024 chempedia.info