Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic fluid criticality viscosity

The terms in Eq. (6) include the gravitational constant, g, the tube radius, R, the fluid viscosity, p, the solute concentration in the donor phase, C0, and the penetration depth, The density difference between the solution and solvent (ps - p0) is critical to the calculation of a. Thus, this method is dependent upon accurate measurement of density values and close temperature control, particularly when C0 represents a dilute solution. This method has been shown to be sensitive to different diffusion coefficients for various ionic species of citrate and phosphate [5], The variability of this method in terms of the coefficient of variation ranged from 19% for glycine to 2.9% for ortho-aminobenzoic acid. [Pg.107]

The dynamic behavior of ionic liquids is important for both practical and theoretical reasons. From a practical standpoint, bulk transport properties such as the viscosity, self-diffUsivity, thermal conductivity and electrical conductivity govern the effectiveness of these liquids in any application. For example, mass transfer of reactants and products is critical to the performance of ionic liquid solvents, and is highly correlated with the self-difiiisivity and viscosity. Viscosity also plays a role in the cost of pumping the liquid and its performance as a lubricant. Thermal conductivity is a key parameter for thermal fluid applications, and electrical conductivity is obviously important in electrochemical applications. [Pg.231]

Chapter 8 briefly introduced the concept of supercritical fluids in the context of undersea thermal vents. The supercritical point for water occurs at a temperature of 705°F (374°C) and a pressure of 222.3 bar (atmosphere). Above this temperature, no pressure can condense water to its liquid state. For carbon dioxide (CO2), the critical temperature (88.0°F or 31.1°C) and critical pressure (73.8 bar) are much lower. Above the supercritical point, CO2 behaves as a liquidlike gas liquidlike densities, gaslike viscosities. The solubility properties of supercritical CO2 are mnable by varying temperature and/or pressure. Density and dielectric constant increase with increasing pressure and decreasing temperature. Water and ionic substances are insoluble in supercritical CO2. The ability of supercritical CO2 to dissolve and extract relatively non-polar substances has been known for decades. The range may be extended by adding polar solvents such as methanol or acetone. The addition of surfactants helps to disperse microscopic particles to form colloidal suspensions. Carbon dioxide is nonflammable, nontoxic, and inexpensive. [Pg.399]


See other pages where Ionic fluid criticality viscosity is mentioned: [Pg.172]    [Pg.480]    [Pg.480]    [Pg.88]    [Pg.98]    [Pg.187]    [Pg.2927]    [Pg.14]    [Pg.88]    [Pg.98]   
See also in sourсe #XX -- [ Pg.19 ]




SEARCH



Critical fluids

Ionic fluid

Viscosity critical

Viscosity, fluid

© 2024 chempedia.info