Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic compounds transverse charge

In molecular crystals or in crystals composed of complex ions it is necessary to take into account intramolecular vibrations in addition to the vibrations of the molecules with respect to each other. If both modes are approximately independent, the former can be treated using the Einstein model. In the case of covalent molecules specifically, it is necessary to pay attention to internal rotations. The behaviour is especially complicated in the case of the compounds discussed in Section 2.2.6. The pure lattice vibrations are also more complex than has been described so far . In addition to (transverse and longitudinal) acoustical phonons, i.e. vibrations by which the constituents are moved coherently in the same direction without charge separation, there are so-called optical phonons. The name is based on the fact that the latter lattice vibrations are — in polar compounds — now associated with a change in the dipole moment and, hence, with optical effects. The inset to Fig. 3.1 illustrates a real phonon spectrum for a very simple ionic crystal. A detailed treatment of the lattice dynamics lies outside the scope of this book. The formal treatment of phonons (cf. e(k), D(e)) is very similar to that of crystal electrons. (Observe the similarity of the vibration equation to the Schrodinger equation.) However, they obey Bose rather than Fermi statistics (cf. page 119). [Pg.70]


See other pages where Ionic compounds transverse charge is mentioned: [Pg.303]    [Pg.1571]    [Pg.442]    [Pg.60]   
See also in sourсe #XX -- [ Pg.324 , Pg.474 ]




SEARCH



Ionic charges

Ionic compounds

© 2024 chempedia.info