Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Insertion reactions, 3 membered rings

The silyl enol ethers 209 and 212 are considered to be sources of carbanions. and their transmetallation with Pd(OAc)2 forms the Pd enolate 210. or o.w-tt-allylpalladium, which undergoes the intramolecular alkene insertion and. 1-elimination to give 3-methylcyclopentenone (211) and a bicyclic system 213[199], Five- and six-membered rings can be prepared by this reaction[200]. Use of benzoquinone makes the reaction catalytic. The reaction has been used for syntheses of skeletons of natural products, such as the phyllocladine intermediate 214[201], capnellene[202], the stemodin intermediate 215[203] and hir-sutene [204]. [Pg.49]

The reaction of l,4-bis(trimethylsilyl)-l,3-butadiyne (174) with disilanes, followed by treatment with methylmagnesium bromide, produces i,l,4,4-tetra(-trimethylsilyl)-l,2,3-butatriene (175) as a major product[96]. The reaction of octaethyltetrasilylane (176) with DMAD proceeds by ring insertion to give the six-membered ring compounds 177 and 178[97], The l-sila-4-stannacyclohexa-2,5-diene 181 was obtained by a two-step reaction of two alkynes with the disilanylstannane 179 via the l-sila-2-stannacyclobutane 180[98],... [Pg.493]

By a photochemically induced elimination of CO, a chromium carbene complex with a free coordination site is generated. That species can coordinate to an alkyne, to give the alkyne-chromium carbonyl complex 4. The next step is likely to be a cycloaddition reaction leading to a four-membered ring compound 5. A subsequent electrocyclic ring opening and the insertion of CO leads to the vinylketene complex 6 ... [Pg.98]

The most useful of the insertion processes is the intramolecular reactions that occur with high selectivity for the formation of five-membered ring products. The electrophilic nature of the process is suggested by C-H bond reactivity in competitive experiments (3°>20 >1°) [76, 77]. Asymmetric catalysis with Rh2(MPPIM)4 has been used to prepare a wide variety of lignans that include (-)-enterolactone (3) [8], as well as (R)-(-)-baclofen (2) [7],2-deoxyxylolactone (31) [80,81],and (S)-(+)-imperanane (32) [82].Enantioselectivities are 91-96%... [Pg.214]

Rhodium carboxylates have been found to be effective catalysts for intramolecular C—H insertion reactions of a-diazo ketones and esters.215 In flexible systems, five-membered rings are formed in preference to six-membered ones. Insertion into methine hydrogen is preferred to a methylene hydrogen. Intramolecular insertion can be competitive with intramolecular addition. Product ratios can to some extent be controlled by the specific rhodium catalyst that is used.216 In the example shown, insertion is the exclusive reaction with Rh2(02CC4F9)4, whereas only addition occurs with Rh2(caprolactamate)4, which indicates that the more electrophilic carbenoids favor insertion. [Pg.936]

Intramolecular insertion reactions show a strong preference for formation of five-membered rings.219 This was seen in a series of a-diazomethyl ketones of increasing chain length. With only one exception, all of the products were five-membered lactones.220 In the case of n = 3, the cyclization occurs in the side chain, again forming a five-membered ring. [Pg.938]

The tetraoxahydrospirophosphorane (57) has been isolated in 66% yield from the reaction of (55) with triethylammonium perfluor-opinacolate (56). Hexafluoroacetone inserts into the P-H bond of (57) to form (58) which may also be obtained from (59) as shown1 1. The 1H and 19F n.m.r. spectra of the phosphoranes reveal rapid pseudorotational processes and a time-averaged conformation of a flattened chair for the six-membered rings. [Pg.69]

In a reaction similar to the (>-alkoxide elimination reactions seen with zir-conocenes, catalytic Rh(OH)(cod)2 and 2 eq. of arylboronic acids gave cyclic products 165 from enynes 166 (Scheme 35) [100]. In this reaction, transmet-allation of Rh - OR with B - Ph gave Rh - Ph species 167, which inserted into the alkyne, cyclized to 168, and finally underwent [>-alkoxidc elimination to provide Rh-OCH3. This reaction is limited to the formation of five-membered rings, but it can also undergo cascade type reactions of enediynes to give multicyclic products [100]. [Pg.251]

Insertion reactions of stannylenes, even of unstable ones, into metal-metal bonds have attracted considerable attention 156 158>. In this context, it is very astonishing that the reaction (28) between the alkyl-substituted stannylene 14 and Fe2(CO)9 does not lead to a product of type 66 (X2Sn Fe(CO)4)2 (an X-ray structural analysis indicates an Sn2Fe2-ring167)) but to a three-membered ring, as determined by elemental analysis and from IR-spectral data133). [Pg.41]

Thermolysis of 12 with frans-cinnamaldehyde afforded the insertion compound 19, formed through the di-insertion of two carbonyl ligands into the C—Si bond of 12. The reaction of 12 with fumaronitrile yielded the cyclization product 20. X-ray study revealed 20 to be a cyclization product which contains two types of disilyl moieties, imino and N,N-bis(silyl)amino, which are connected by a five-membered ring. [Pg.67]

Another important line of investigation concerned the carbonyl insertion reaction, which was best defined in manganese chemistry (75, 16) and extended to acylcobalt tetracarbonyls by Heck and Breslow. The insertion may be through three-membered ring formation or by nucleophilic attack of an alkyl group on a coordinated CO group. [Pg.4]

Under the influence of nickel catalysts, 1,5- and 1,6-dienes undergo isomerization and cyclization, preferably to five-membered ring compounds. The cyclization takes place probably via an intramolecular insertion reaction ( , ) involving a ir-5-alken-l-ylnickel complex such as 33, Table III, and 34, Table IV formed by Ni — C, and Ni — C2 additions... [Pg.125]


See other pages where Insertion reactions, 3 membered rings is mentioned: [Pg.92]    [Pg.140]    [Pg.159]    [Pg.181]    [Pg.396]    [Pg.483]    [Pg.75]    [Pg.84]    [Pg.115]    [Pg.117]    [Pg.231]    [Pg.22]    [Pg.28]    [Pg.30]    [Pg.38]    [Pg.45]    [Pg.168]    [Pg.322]    [Pg.114]    [Pg.19]    [Pg.155]    [Pg.171]    [Pg.188]    [Pg.101]    [Pg.938]    [Pg.50]    [Pg.249]    [Pg.250]    [Pg.304]    [Pg.960]    [Pg.1170]    [Pg.43]    [Pg.136]    [Pg.240]    [Pg.194]    [Pg.106]    [Pg.60]    [Pg.175]   
See also in sourсe #XX -- [ Pg.358 ]




SEARCH



Insertion reactions

© 2024 chempedia.info