The first input vector is copied into the weight vector of the first unit, which becomes now an active unit. [Pg.693]

Let a be an input vector such that A(a) holds and computation (P,I,a) halts with output b. This computation follows some path a which can be divided into segments such that each in starts at tagged point t. in S and [Pg.161]

For the next input vector the similarity, p,, with the weight vector, W , of each active unit, k is calculated [Pg.693]

Fig. 34.20. ITTFA projection of the input vector iii in the PC-space gives out]. A new input target in2 is obtained by adapting outi to specific constraints. in2 projected in the PC-space gives out2. |

The unit in the Kohonen map that is most similar to the input vector is declared as the winning unit and is activated (i.e. its output is set to 1). The output of a Kohonen unit is typically 0 (not activated) or 1 (activated). [Pg.688]

Figure 3 Feature relevance. The weight parameters for every component in the input vector multiplied with the standard deviation for that component are plotted. This is a measure of the significance of this feature (in this case, the logarithm of the power in a small frequency region.) |

If we omit the input criterion in discussing partial or total correctness it is understood that we take as input criterion the function which is TRUE on all of Dn - i.e., all possible input vectors are regarded as legitimate input. [Pg.45]

There exist many different types of ART. The variant ARTl is the original Grossberg algorithm. It allows only binary input vectors. ART2 allows also continuous input. It is the basic variant of this type that we will describe. [Pg.693]

The idea behind this approach is simple. First, we compose the characteristic vector from all the descriptors we can compute. Then, we define the maximum length of the optimal subset, i.e., the input vector we shall actually use during modeling. As is mentioned in Section 9.7, there is always some threshold beyond which an inaease in the dimensionality of the input vector decreases the predictive power of the model. Note that the correlation coefficient will always be improved with an increase in the input vector dimensionality. [Pg.218]

The symmetry and simplicity of the matrix C (and hence the extreme rapidity of the FFT) is determined by the particular order employed in both the input vector / and the output F. Thus, both sets of data must be rearranged from what would be normally expected. While this problem represents an inconvenience for a programmer, it is carried out automatically in available programs. Although it would probably go un-noticed by the user, it is important for him or her to understand the fundamental algorithm of the FFT, which is based on the inverse binary order explained here. [Pg.385]

As described by Brogan ( ) the addition of state variable feedback to the system of Figure 1 results in the control scheme shown in Figure 5. The matrix K has been added. This redefines the input vector as [Pg.196]

The architecture of a counter-propagation network resembles that of a Kohonen network, but in addition to the cubic Kohonen layer (input layer) it has an additional layer, the output layer. Thus, an input object consists of two parts, the m-dimeiisional input vector (just as for a Kohonen network) plus a second k-dimensional vector with the properties for the object. [Pg.459]

Both cases can be dealt with both by supervised and unsupervised variants of networks. The architecture and the training of supervised networks for spectra interpretation is similar to that used for calibration. The input vector consists in a set of spectral features yt(Zj) (e.g., intensities at selected wavelengths zi). The output vector contains information on the presence and absence of certain structure elements and groups fixed by learning rules (Fig. 8.24). Various types of ANN models may be used for spectra interpretation, viz mainly such as Adaptive Bidirectional Associative Memory (BAM) and Backpropagation Networks (BPN). The correlation [Pg.273]

The profits from using this approach are dear. Any neural network applied as a mapping device between independent variables and responses requires more computational time and resources than PCR or PLS. Therefore, an increase in the dimensionality of the input (characteristic) vector results in a significant increase in computation time. As our observations have shown, the same is not the case with PLS. Therefore, SVD as a data transformation technique enables one to apply as many molecular descriptors as are at one s disposal, but finally to use latent variables as an input vector of much lower dimensionality for training neural networks. Again, SVD concentrates most of the relevant information (very often about 95 %) in a few initial columns of die scores matrix. [Pg.217]

The choice of the objective function is very important, as it dictates not only the values of the parameters but also their statistical properties. We may encounter two broad estimation cases. Explicit estimation refers to situations where the output vector is expressed as an explicit function of the input vector and the parameters. Implicit estimation refers to algebraic models in which output and input vector are related through an implicit function. [Pg.14]

We mentioned above that a typical problem for a Boltzman Machine is to obtain a set of weights such that the states of the visible neurons take on some desired probability distribution. For example, the task may he to teach the net to learn that the first component of an Ai-component input vector has value +1 40% of the time. To accompli.sh this, a Boltzman Machine uses the familiar gradient-descent technique, but not on the energy of the net instead, it maximizes the relative entropy of the system. [Pg.534]

Any finite interpretation is necessarily recursive. There are only a finite number of function letters and predicate letters in P and so for each finite domain D only a finite number of possible assignments of functions from iP to D or eP to 0,1. We can recursively enumerate all finite interpretations. A program must loop if it ever enters the sane statement twice with all values specified alike. If finite domain D of interpretation I has d objects and P has n statements and m variables of any kind, then any execution sequence under I with more than ncP steps must twice enter the same statement with the same specification of all variables and hence must represent an infinite loop. Hence for each input vector a computation (P,I,a) diverges if and only if it fails to halt within ndm steps. So for each finite interpretation we can decide whether P baits for some inputs or all inputs. Thus (5) and (6) are partially decidable. [Pg.209]

© 2019 chempedia.info