Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hyperbolicity phase-space transition states

The point q = p = 0 (or P = Q = 0) is a fixed point of the dynamics in the reactive mode. In the full-dimensional dynamics, it corresponds to all trajectories in which only the motion in the bath modes is excited. These trajectories are characterized by the property that they remain confined to the neighborhood of the saddle point for all time. They correspond to a bound state in the continuum, and thus to the transition state in the sense of Ref. 20. Because it is described by the two independent conditions q = 0 and p = 0, the set of all initial conditions that give rise to trajectories in the transition state forms a manifold of dimension 2/V — 2 in the full 2/V-dimensional phase space. It is called the central manifold of the saddle point. The central manifold is subdivided into level sets of the Hamiltonian in Eq. (5), each of which has dimension 2N — 1. These energy shells are normally hyperbolic invariant manifolds (NHIM) of the dynamical system [88]. Following Ref. 34, we use the term NHIM to refer to these objects. In the special case of the two-dimensional system, every NHIM has dimension one. It reduces to a periodic orbit and reproduces the well-known PODS [20-22]. [Pg.198]

In statistical reaction rate theory, the concept of transition state plays a key role. Transition states are supposed to be the boundaries between reactants and products. However, the precise formulation of the transition state as a dividing surface is only possible when we consider transition states in phase space. This is the place where the concepts of normally hyperbolic invariant manifolds (NHIMs) and their stable and unstable manifolds come into play. [Pg.558]

This enables us to extract and visualize the stable and unstable invariant manifolds along the reaction coordinate in the phase space, to and from the hyperbolic point of the transition state of a many-body nonlinear system. PJ AJI", Pj, Qi, t) and PJ AJ , Pi, q, t) shown in Figure 2.13 can tell us how the system distributes in the two-dimensional (Pi(p,q), qi(p,q)) and PuQi) spaces while it retains its local, approximate invariant of action Jj (p, q) for a certain locality, AJ = 0.05 and z > 0.5, in the vicinity of... [Pg.110]

In chemical terms, normally hyperbolic invariant manifolds play the role of an extension of the concept of transition states. The reason why it is an extension is as follows. As already explained, transition states in the traditional sense are regarded as normally hyperbolic invariant manifolds in phase space. In addition to them, those saddle points with more than two unstable directions can be considered as normally hyperbolic invariant manifolds. Such saddle points are shown to play an important role in the dynamical phase transition of clusters [14]. Furthermore, as is already mentioned, a normally hyperbolic invariant manifold with unstable degrees of freedom along its tangential directions can be constructed as far as instability of its normal directions is stronger than its tangential ones. For either of the above cases, the reaction paths in the phase space correspond to the normal directions of these manifolds and constitute their stable or unstable manifolds. [Pg.171]

The first method comes from the idea that the connections among normally hyperbolic invariant manifolds would form a network, which means that one manifold would be connected with multiple manifolds through homoclinic or heteroclinic intersections. Then, a tangency would signify a location in the phase space where their connections change. This idea offers a clue to understand, based on dynamics, those reactions where one transition state is connected with multiple transition states. In these reaction processes, the branching points of the reaction paths and the reaction rates to each of them are important We expect that analysis of the network is the first step toward this direction. [Pg.176]


See other pages where Hyperbolicity phase-space transition states is mentioned: [Pg.563]    [Pg.167]    [Pg.212]    [Pg.555]    [Pg.260]    [Pg.695]    [Pg.82]    [Pg.163]    [Pg.163]   


SEARCH



Hyperbolic

Hyperbolicity

Normally hyperbolic invariant manifolds phase-space transition states

Phase space

Phase-space transition states

State-space

Transitional space

© 2024 chempedia.info