Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxylamine nitrate reduction process

Thus, a large excess of U(IV) is required to reduce Pu(IV), diluting the enrichment of the recovered U. Further, the reactions described by Eqs. 7 and 8 will reduce the efficiency of the separation process and may ultimately lead to incomplete separation of U and Pu due to lack of reducing agent, so increasing the cost of the procedure. Alternative methods to reduce Pu include the use of hydroxylamine nitrate with hydrazine as stabiliser or the electroreduction of Pu(III) [66] in situ. Nonetheless, the current use of U(IV) as a reductant for... [Pg.456]

The HPO (hydroxylamine phosphate oxime) process, developed byDSMand licensed by Siamicarbon, totally eliminates the production of ammonium sulfate, both in the production of hydroxylamine itself and in die oxime production stage. It consists of the catalytic hydrogenation of the nitrate ions resulting from the oxidation of ammonia to hydroxylamine ions in a solution buffered by phosphates. The nitrate reduction reaction is as follows ... [Pg.262]

Plutonium trifluoride. Plutonium trifluoride can be converted directly to plutonium metal, or it is an intermediate in the formation of PUF4 or PUF4 -PUO2 mixtures for thermochemical reduction, as described in Sec. 4.8. The stabilized Pu(III) solution, produced by cation exchange in one of the Purex process options for fuel reprocessing, is a natural feed for the formation of plutonium trifluoride, as is shown in the flow sheet of Fig. 9.9 [03]. A typical eluent solution from cation exchange consists of 30 to 70 g plutonium/liter, 4 to 5 Af nitric acid, 0.2 Af sulfamic acid, and 03 Af hydroxylamine nitrate. The sulfamic acid reacts rapidly with nitrous acid to reduce the rate of oxidation of Pu(III) to about 4 to 6 percent per day. Addition of ascorbic acid to the plutonium solution just before fluoride precipitation reduces Pu(IV) rapidly and completely to Pu(III). [Pg.443]

Me Kibben, J.M. and J.E. Bercaw, 1971. Hydroxylamine nitrate as a plutonium reductant in the PUREX solvent extraction process. Report DP-1248. Aiken, SC Savannah River Laboratory. [Pg.465]

Aromatic nitro and nitroso compounds are easily reduced at carbon and mercury electrodes. Other nitro compounds such as nitrate esters, nitramines, and nitrosamines are also typically easily reduced. The complete reduction of a nitro compound consists of three two-electron steps (nitro-nitroso-hydroxylamine-amine). Since most organic oxidations are only two-electron processes, higher sensitivity is typically found for nitro compounds. Several LCEC based determination of nitro compounds have been reported... [Pg.26]

The Purex process, ie, plutonium uranium reduction extraction, employs an organic phase consisting of 30 wt % TBP dissolved in a kerosene-type diluent. Purification and separation of U and Pu is achieved because of the extractability of U02+2 and Pu(IV) nitrates by TBP and the relative inextractability of Pu(III) and most fission product nitrates. Plutonium nitrate and U02(N03)2 are extracted into the organic phase by the formation of compounds, eg, Pu(N03)4 -2TBP. The plutonium is reduced to Pu(III) by treatment with ferrous sulfamate, hydrazine, or hydroxylamine and is transferred to the aqueous phase U remains in the organic phase. Further purification is achieved by oxidation of Pu(III) to Pu(IV) and re-extraction with TBP. The plutonium is transferred to an aqueous product. Plutonium recovery from the Purex process is ca 99.9 wt % (128). Decontamination factors are 106 — 10s (97,126,129). A flow sheet of the Purex process is shown in Figure 7. [Pg.201]

Non-Reversible Processes. —Reactions of the non-reversible type, i.e., with systems which do not give reversible equilibrium potentials, occur most frequently with un-ionized organic compounds the cathodic reduction of nitrobenzene to aniline and the anodic oxidation of alcohol to acetic acid are instances of this type of process. A number of inorganic reactions, such as the electrolytic reduction of nitric acid and nitrates to hydroxylamine and ammonia, and the anodic oxidation of chromic ions to chromate, are also probably irreversible in character. Although the problems of electrolytic oxidation and reduction have been the subject of much experimental investigation, the exact mechanisms of the reactions involved are still in dispute. For example, the electrolytic reduction of the compound RO to R may be represented by... [Pg.505]

Once plutonium and uranium are coextracted and codecontaminated, plutonium is separated from uranium in the partitioning contactor by reduction to Pu(III) with a reduc-tant. Over the years, a number of plutonium reductants have been proposed. The most widely used reductant to partition plutonium from uranium in the PUREX process was (Fe(S03NH2)2) other alternates were proposed such as hydrazine-stabilized ferrous nitrate or uranous nitrate, and hydroxylamine salts. [Pg.413]

In the DSM HPO process, nitrate ions are reduced to hydroxylamine using a palladium/carbon catalyst in an aqueous phosphate buffer solution. It was possible to prepare cyclohexanone oxime by a process involving the extraction of cyclohexanone from solution in toluene, into an immiscible aqueous solution of hydroxylamine in a two phase liquid reactor. The spent solution was then recycled with added nitric acid to the reduction step and sulfate production was eliminated ... [Pg.290]


See other pages where Hydroxylamine nitrate reduction process is mentioned: [Pg.521]    [Pg.283]    [Pg.387]    [Pg.331]    [Pg.414]    [Pg.201]    [Pg.949]    [Pg.280]    [Pg.724]    [Pg.399]    [Pg.679]    [Pg.194]    [Pg.71]   
See also in sourсe #XX -- [ Pg.52 ]




SEARCH



Hydroxylamine nitrate reductant

Hydroxylamine reduction

Hydroxylamines reduction

Nitrates reduction

Nitration process

Reduction process

Reduction processing

Reductive processes

© 2024 chempedia.info