Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydroxylamine esters synthesis

Polymer-bound 1-hydroxybenzotriazole 1008 reacts with carboxylic acids in the presence of 1,3-diisopropylcarbo-diimide (1,3-DIC) and DMAP to produce esters 1009. Treated with hydroxylamine, esters 1009 are converted to hydroxamic acids 1010 (Scheme 167) <20030BC850>. Starting 1-hydroxybenzotriazole 1008 is recycled in the process and can be used for other syntheses. This method is well suited for automated synthesis of a library of hydroxamic acids. In similar applications of polymer-supported 1-hydroxybenzotriazole 1008, a wide variety of amides is synthesized <1997JOC2594, 2002JC0576>. [Pg.113]

Other Applications. Hydroxylamine-O-sulfonic acid [2950-43-8] h.2is many applications in the area of organic synthesis. The use of this material for organic transformations has been thoroughly reviewed (125,126). The preparation of the acid involves the reaction of hydroxjlamine [5470-11-1] with oleum in the presence of ammonium sulfate [7783-20-2] (127). The acid has found appHcation in the preparation of hydra2ines from amines, aUphatic amines from activated methylene compounds, aromatic amines from activated aromatic compounds, amides from esters, and oximes. It is also an important reagent in reductive deamination and specialty nitrile production. [Pg.103]

Earlier reported syntheses have been shown to give isoxazolin-5-ones. Other isoxazolin-3-ones have been prepared by the reaction of methylacetoacetic esters and hydroxylamine. An additional synthesis was reported by the action at 0°C of hydroxylamine on ethyl -benzoylpropionate to produce an insoluble hydroxamic acid which cyclized on acid treatment. The hydroxamic acid acetal was similarly transformed into the isoxazolin-3-one (Scheme 149) (71BSF3664, 70BSF1978). [Pg.106]

Although the synthesis of 3-isoxazolols from P-keto esters and hydroxylamine suffers from the formation of 5-isoxazolones as major products, treatment of acyl chlorides with Meldrum s acid 4 followed by aminolysis gave rise to p-keto hydroxamic acids 6 that cyclised to the corresponding 5-substituted 3-isoxazolols 7 without formation of any byproduct <00JOC1003>. Cyclisation of N-substituted salicylhydroxamic acids 9 under... [Pg.217]

The discovery of oxazoline hydroxamates as potential inhibitors of LpxC was the result of high-throughput screening of large libraries of compounds at the Merck Research Laboratories in collaboration with the Department of Biochemistry, Duke University Medical Center [95]. The lead compound, L-573,655, was a racemic mixture of 4-carbohydroxamido-2-phenyl-2-oxazoline, which had been previously made by Stammer et al. [96] as a precursor in the chemical synthesis of cyclosporine. Namely, (R,S)-serine methyl ester hydrochloride (149) is converted into (R,S)-4-carbomethoxy-2-phenyl-2-oxazoline (150) via treatment with ethyl benzimidate using the Elliot procedure [97]. Treatment of this ester with one equivalent each of hydroxylamine and sodium methoxide in methanol at room temperature affords the desired (R,S)-4-carbohydroxamido-2-phenyl-2-oxazoline (151), as depicted in Scheme 30. [Pg.208]

In 1983, Prasad et al.12 first reported the condensation of chloromethyl polystyrene with /V-hydroxyphthalimide to give the ester, hydrazinolysis of which yielded the desired resin-bound hydroxylamine. However, the sole purpose of this reagent was to react with, and hence extract ketones from, a complex steroidal mixture, and its use for the solid-phase synthesis of hydroxamic acids was not explored. Recently, the exploitation of the above solid-phase approach for the synthesis of hydroxamic acids was independently reported by three groups,7-9 all of which differ only in the method for the initial anchoring of TV-hydroxyphtha-limide to an 4-alkoxybenzyl alcohol functionalized polystyrene or trityl chloride polystyrene. Subsequent /V-deprotection was... [Pg.97]

In 2003, Devocelle and colleagues reported a convenient two-step procedure for the parallel synthesis of hydroxamic acids (or O-protected hydroxamic acids 207) from carboxylic acids and hydroxylamine. It involves the formation of a polymer-bound HOBt active ester 206 from 204 and the acid 205 and subsequent reaction with O-protected or free hydroxylamine (Scheme 89). The use of free hydroxylamine leads to increased yields while maintaining high purities. Recycling of the exhausted resin 204 to prodnce the same or a different hydroxamic acid has been achieved by a three-step protocol, which is easily amenable to automation and cost-economical. [Pg.210]

Sulfonylhydroxylamines and hydroxylamine O-sulfonic acid have found wide apph-cation in synthesis of amines from achiral or chiral organoboranes and boronate esters and the hydroboration-amination methodology is successfully used for direct amination of alkenes. 0-Sulfonyloximes were also found to be good reagents for synthesis of amines from organomagnesium, -copper and -zinc reagents. [Pg.338]

Pyrimidines can be formed in reactions involving multiple bond formations, and the reactions of this subgroup have a long history <1994HC(52)1>. A recent example is the synthesis of a 6-substituted uracil derivative 740 (Scheme 9), where an a,/3-unsaturated ester 737, A,0-bis(trimethylsilyl)hydroxylamine, phenyl chloroformate, and ammonia supplied the four components of C(4)-C(5)-C(6), N-1, C-2, and N-3, respectively <2000TL4307> ... [Pg.203]

Cyclization of a dipeptide having a hydroxylamine unit at the N-terminus is the second general method for the synthesis of 1-hydroxypiperazine-2,5-diones. Thus, Japanese workers have reported that the N-bromoacetyl derivatives (210) obtained from the corresponding dehydro amino acid esters, on treatment with hydroxylamine, give low yields of 1-hydroxy-3-alkylidenepiperazine-2,5-diones (211) (78BCJ550). The corresponding iodo compounds lead to better yields, whereas the chloroacetyl derivative does not cyclize under these conditions. [Pg.273]

Isoniazide, the hydrazide of pyridine-4-carboxylic acid, is still, well over half a century after its discovery, one of the mainstays for the treatment of tuberculosis. Widespread use led to the serendipitous discovery of its antidepressant activity. This latter activity is retained when pyridine is replaced by isoxazole. The requisite ester (45-4) is obtained in a single step by condensation of the diketo ester (45-1), obtained by aldol condensation of acetone with diethyl oxalate, with hydroxylamine. One explanation of the outcome of the reaction assumes the hrst step to consist of conjugate addition-elimination of hydroxylamine to the enolized diketone to afford (45-2) an intermediate probably in equilibrium with the enol form (45-3). An ester-amide interchange of the product with hydrazine then affords the corresponding hydrazide (45-5) reductive alkylation with benzaldehyde completes the synthesis of isocarboxazid (45-6) [47]. [Pg.267]


See other pages where Hydroxylamine esters synthesis is mentioned: [Pg.382]    [Pg.47]    [Pg.249]    [Pg.103]    [Pg.34]    [Pg.196]    [Pg.207]    [Pg.243]    [Pg.206]    [Pg.550]    [Pg.36]    [Pg.146]    [Pg.118]    [Pg.47]    [Pg.1544]    [Pg.228]    [Pg.231]    [Pg.359]    [Pg.39]    [Pg.39]    [Pg.397]    [Pg.273]    [Pg.253]    [Pg.363]    [Pg.585]    [Pg.49]    [Pg.49]   


SEARCH



Hydroxylamines synthesis

© 2024 chempedia.info