Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolytic Enzyme Substrates

Hydrolytic enzymes such as esterases and Upases have proven particularly useful for asymmetric synthesis because of their abiUties to discriminate between enantiotopic ester and hydroxyl groups. A large number of esterases and Upases are commercially available in large quantities many are inexpensive and accept a broad range of substrates. [Pg.332]

Cutinase is a hydrolytic enzyme that degrades cutin, the cuticular polymer of higher plants [4], Unlike the oflier lipolytic enzymes, such lipases and esterases, cutinase does not require interfacial activation for substrate binding and activity. Cutinases have been largely exploited for esterification and transesterification in chemical synthesis [5] and have also been applied in laundry or dishwashing detergent [6]. [Pg.137]

However, the most common and important method of synthesis of chiral non-racemic hydroxy phosphoryl compounds has been the resolution of racemic substrates via a hydrolytic enzyme-promoted acylation of the hydroxy group or hydrolysis of the 0-acyl derivatives, both carried out under kinetic resolution conditions. The first attempts date from the early 1990s and have since been followed by a number of papers describing the use of a variety of enzymes and various types of organophosphorus substrates, differing both by the substituents at phosphorus and by the kind of hydroxy (acetoxy)-containing side chain. [Pg.173]

Fig. 6.13. Different designs of FRET sensors. (A) Substrates for hydrolytic enzymes. (B) Sensors for bond formation. (C) Sensors based on conformational or structural change. (D) Environmentally sensitive probes. (E) Quenched activity-based probe to monitor small molecule-enzyme interaction. (F) Small molecule-enzyme interaction using a labeled protein. Fig. 6.13. Different designs of FRET sensors. (A) Substrates for hydrolytic enzymes. (B) Sensors for bond formation. (C) Sensors based on conformational or structural change. (D) Environmentally sensitive probes. (E) Quenched activity-based probe to monitor small molecule-enzyme interaction. (F) Small molecule-enzyme interaction using a labeled protein.
Since kinases are not hydrolytic enzymes, a small molecule-based FRET probe does not seem to be a straight forward solution for this enzyme activity. Nevertheless, quite a number of fluorescent probes based on small substrate peptides have been prepared in... [Pg.274]

Another important group of hydrolytic enzymes are phospho- and cyclophosphodiesterases. They catalyze the hydrolysis of phospho-diester bonds and many of the most relevant biological substrates are nucleic acids. Phospholipase C and D are also important examples. Initial attempts to measure phosphodiesterase activity placed a phosphodiester between a fluorophore and a quencher and the probe was tested in vitro [146], This system was slightly modified by Caturla and used for the identification of catalysts with phosphodiesterase activity [147], More recently, Nagano and co-workers used a coumarin donor and fluorescein as a FRET... [Pg.276]

Although hydrolytic enzymes, esterases and amidases, are named after their major substrates, the same enzyme can often hydrolyze esters, thioesters, and amides therefore, the differentiation between esterases and amidases is sometimes artificial. The highest hydrolytic activity is in the liver, but the enzyme pseudocholinesterase is found in the serum. Gut bacteria also contain hydrolytic enzymes. [Pg.121]

While there are clear differences in substrate selectivity between the drug metabolizing hydrolytic enzymes, there is also significant overlap, i.e., they will often tend to metabolize the same substrates but at different rates. For example, pseudocholinesterase, hCE-1, and hCE-2 catalyze the hydrolysis of heroin and cocaine. [Pg.124]

The natural substrates for many enzymes do not show any significant spectral properties and alternative artificial substrates (analogues) may be used. Many hydrolytic enzymes can most easily be detected by using substrate analogues the glycosidases, for instance, may be measured using p-nitro-phenyl derivatives of the appropriate carbohydrates. Hydrolysis results in the production of p-nitrophenol, which can be measured at 404 nm. [Pg.287]

Semm albumin is not an enzyme but a transport protein, yet it has demonstrated hydrolytic activity against a variety of xenobiotic substrates. This este-rase-like activity has been known for years, but there is still confusion in the literature regarding its nature and mechanism. Indeed, it was not clear whether this activity is intrinsic to the albumin molecule or results from contamination of albumin preparations by one or more hydrolytic enzymes. More-recent studies with highly purified human serum albumin (HSA) have confirmed that the protein has an intrinsic esterase activity toward several substrates, but that activity due to contaminants and particularly semm cholinesterase is involved... [Pg.88]

The first and most extensively examined system was the hydrolytic enzyme papain. A variety of isomeric a-bromoacetylisoalloxazines were used to selectively tether a flavin moiety to the active site cysteine residue. Different isomeric linkages were proposed to allow orientations of the flavin relative to the substrate binding site which would favor reactions with a bound substrate [65]. [Pg.26]

Most enzymes bind their substrates in a non-covalent manner but, for those that do bind covalently, the intermediate must be less stable than either substrate or product. Many of the enzymes that involve covalent catalysis are hydrolytic enzymes these include proteases, lipases, phosphatases and also acetylcholinesterase. Some of these enzymes possess a serine residue in the active site, which reacts with the substrate to form an acylenzyme intermediate that is attacked by water to complete the hydrolysis (Fignre 3.3). [Pg.39]


See other pages where Hydrolytic Enzyme Substrates is mentioned: [Pg.19]    [Pg.18]    [Pg.250]    [Pg.19]    [Pg.18]    [Pg.250]    [Pg.495]    [Pg.1057]    [Pg.750]    [Pg.188]    [Pg.224]    [Pg.461]    [Pg.125]    [Pg.46]    [Pg.160]    [Pg.485]    [Pg.872]    [Pg.925]    [Pg.928]    [Pg.157]    [Pg.171]    [Pg.281]    [Pg.275]    [Pg.36]    [Pg.162]    [Pg.260]    [Pg.260]    [Pg.275]    [Pg.104]    [Pg.155]    [Pg.159]    [Pg.293]    [Pg.65]    [Pg.291]    [Pg.30]    [Pg.117]    [Pg.354]    [Pg.63]    [Pg.160]   


SEARCH



Enzymes hydrolytic

Hydrolytic

Substrates enzymes

© 2024 chempedia.info