Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogenolysis aromatic carbonyl compounds

Aromatic aldehydes and aromatic ketones also can be reduced to hydrocarbons in a completely different manner, namely via the so-called ionic hydrogenation followed by an ionic hydrogenolysis. This kind of reduction is possible only if it can proceed via resonance-stabilized cationic intermediates. This resonance stabilization is readily achieved in a benzylic position, and it is therefore advantageous to employ aromatic carbonyl compounds in this kind of reduction. The carboxonium ion A, formed... [Pg.597]

Aromatic ketones represent a rather special case in dissolving metal reductions. Under many conditions pinacol formation is the predominent reaction path (see Volume 3, Chapter 2.6). Also, the reduction potentials of aromatic carbonyl compounds are approximately 1 V less negative than their aliphatic counterparts. The reductions of aromatic ketones by metals in ammonia are further complicated by the fact that hydrogenolysis of the carbon-oxygen bond can take place (Chapter 1.13, this volume) and Birch reduction may intervene (Chapter 3.4, this volume). [Pg.114]

Ruthenium is excellent for hydrogenation of aliphatic carbonyl compounds (92), and it, as well as nickel, is used industrially for conversion of glucose to sorbitol (14,15,29,75,100). Nickel usually requires vigorous conditions unless large amounts of catalyst are used (11,20,27,37,60), or the catalyst is very active, such as W-6 Raney nickel (6). Copper chromite is always used at elevated temperatures and pressures and may be useful if aromatic-ring saturation is to be avoided. Rhodium has given excellent results under mild conditions when other catalysts have failed (4,5,66). It is useful in reduction of aliphatic carbonyls in molecules susceptible to hydrogenolysis. [Pg.67]

The methods which are available for the protection of the aromatic carbonyl group are similar to those for the aliphatic and alicyclic analogues (Section 5.8.8, p. 623). It should be noted however, that when a cyclic acetal is used as the protecting group, a Birch reduction (Section 7.5) on the protected compound usually results in hydrogenolysis of the protecting acetal. [Pg.1056]

For aliphatic aldehydes and ketones, reduction to the alcohol can be carried out under mild conditions over platinum or the more-active forms of Raney nickel. Ruthenium is also an excellent catalyst for reduction of aliphatic aldehydes and can be used to advantage with aqueous solutions. Palladium is not very active for hydrogenation of aliphatic carbonyl compounds, but is effective for the reduction of aromatic aldehydes and ketones excellent yields of the alcohols can be obtained if the reaction is interrupted after absorption of one mole of hydrogen. Prolonged reaction, particularly at elevated temperatures or in the presence of acid, leads to hydrogenolysis and can therefore be used as a method for the reduction of aromatic ketones to methylene compounds. [Pg.416]

Similarly, reduction of both aromatic and aliphatic aldehydes and ketones where there is a chlorine (Cl) or bromine (Br) present elsewhere in the carbonyl-containing compound succeeds with sodium borohydride (NaBH,) and, occasionally, with lithium aluminum hydride (LiAIH,) at low temperatures. Catalytic reduction frequently leads to hydrogenolysis of the halogen, producing the halogen-free alcohol. [Pg.756]


See other pages where Hydrogenolysis aromatic carbonyl compounds is mentioned: [Pg.845]    [Pg.805]    [Pg.319]    [Pg.503]    [Pg.170]    [Pg.185]    [Pg.280]    [Pg.135]    [Pg.136]    [Pg.633]    [Pg.643]    [Pg.135]    [Pg.136]    [Pg.32]   
See also in sourсe #XX -- [ Pg.319 ]




SEARCH



Aromatic carbonyl

Aromatic carbonyl compounds

Aromatic hydrogenolysis

© 2024 chempedia.info