Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrogen statistics

For those who are familiar with the statistical mechanical interpretation of entropy, which asserts that at 0 K substances are nonnally restricted to a single quantum state, and hence have zero entropy, it should be pointed out that the conventional thennodynamic zero of entropy is not quite that, since most elements and compounds are mixtures of isotopic species that in principle should separate at 0 K, but of course do not. The thennodynamic entropies reported in tables ignore the entropy of isotopic mixing, and m some cases ignore other complications as well, e.g. ortho- and para-hydrogen. [Pg.371]

Economic Aspects. Pertinent statistics on the U.S. production and consumption of fluorspar are given in Table 4. For many years the United States has rehed on imports for more than 80% of fluorspar needs. The principal sources are Mexico, China, and the Repubflc of South Africa. Imports from Mexico have declined in part because Mexican export regulations favor domestic conversion of fluorspar to hydrogen fluoride for export to the United States. [Pg.173]

Various equations of state have been developed to treat association ia supercritical fluids. Two of the most often used are the statistical association fluid theory (SAET) (60,61) and the lattice fluid hydrogen bonding model (LEHB) (62). These models iaclude parameters that describe the enthalpy and entropy of association. The most detailed description of association ia supercritical water has been obtained usiag molecular dynamics and Monte Carlo computer simulations (63), but this requires much larger amounts of computer time (64—66). [Pg.225]

Ortho-Para Tritium. As in the case of molecular hydrogen, molecular tritium exhibits nuclear spin isomerism. The spin of the tritium nucleus is S, the same as that for the hydrogen nucleus, and therefore H2 and T2 obey the same nuclear isomeric statistics (16). Below 5 K, molecular tritium is... [Pg.12]

Einally, structural properties that depend directly neither on the data nor on the energy parameters can be checked by comparing the structures to statistics derived from a database of solved protein structures. PROCHECK-NMR and WHAT IE [94] use, e.g., statistics on backbone and side chain dihedral angles and on hydrogen bonds. PROSA [95] uses potentials of mean force derived from distributions of amino acid-amino acid distances. [Pg.271]

Pages 1 and 2 list all the calculation details and execute a calculation for the center point condition of the former statistical study. This is done at 70 atmospheres hydrogen, 25 atmospheres carbon monoxide, and 5 atmospheres of methanol (all partial pressures), and at 485 K temperature. This is a test case because we know that the rate is 4 mol/m s at these conditions, and this is satisfied here. [Pg.221]

The value of k /k can be determined by measuring the ratio of the products 1-chlorobutane 2-chlorobutane during the course of the reaction. A statistical correction must be made to take account of the fact that the primary hydrogens outnumber the secondaiy ones by 3 2. This calculation provides the relative reactivity of chlorine atoms toward the primary and secondary hydrogens in butane ... [Pg.686]

Fig. 5(a) contains the oxygen and hydrogen density profiles it demonstrates clearly the major differences between the water structure next to a metal surface and near a free or nonpolar surface (compare to Fig. 3). Due to the significant adsorption energy of water on transition metal surfaces (typically of the order of 20-50kJmoP see, e.g., [136]), strong density oscillations are observed next to the metal. Between three and four water layers have also been identified in most simulations near uncharged metal surfaces, depending on the model and on statistical accuracy. Beyond about... Fig. 5(a) contains the oxygen and hydrogen density profiles it demonstrates clearly the major differences between the water structure next to a metal surface and near a free or nonpolar surface (compare to Fig. 3). Due to the significant adsorption energy of water on transition metal surfaces (typically of the order of 20-50kJmoP see, e.g., [136]), strong density oscillations are observed next to the metal. Between three and four water layers have also been identified in most simulations near uncharged metal surfaces, depending on the model and on statistical accuracy. Beyond about...
If every collision of a chlorine atom with a butane molecule resulted in hydrogen abstraction, the n-butyl/5ec-butyl radical ratio and, therefore, the 1-chloro/2-chlorobutane ratio, would be given by the relative numbers of hydrogens in the two equivalent methyl groups of CH3CH2CH2CH3 (six) compared with those in the two equivalent methylene groups (four). The product distribution expected on a statistical basis would be 60% 1-chloro-butane and 40% 2-chlorobutane. The experimentally observed product distribution, however, is 28% 1-chlorobutane and 72% 2-chlorobutane. 5ec-Butyl radical is therefore formed in greater anounts, and n-butyl radical in lesser anounts, than expected statistically. [Pg.176]

Deviations from this generalization may have several sources, including charge repulsion, steric effects, statistical factors, intramolecular hydrogen bonding, and other structural effects that alter electron density at the reaction site. Hague - ° P has discussed these effects. [Pg.150]

First, the kinetics of the reactions of 0-, m-, and p-xylene as well as of toluene were studied separately (96) at various combinations of initial partial pressures of the hydrocarbon and hydrogen. From a broader set of 23 rate equations, using statistical methods, we selected the best equations for the initial rate and determined the values of their constants. With xylenes and toluenes, these were Eqs. (17a) and (17b). [Pg.29]

In our study we first investigated separately the kinetics of the hydrogenation of phenol and of the hydrogenation of cyclohexanone (7), and from twenty-six different equations, using statistical treatment of the data, we found the best equations for the initial reaction rates to be... [Pg.32]

For example, disproportionation of but-2-yl radicals produces a mixture of butenes as shown (Scheme 1.1 I).138 Thermodynamic considerations suggest thai but-l-ene and but-2-enes should be formed in a ratio of ca 2 98. However, the observed 5 4 ratio of but-1-ene but-2-enes is little different from the 3 2 ratio that is expected on statistical grounds (i.e. ratio of f5-hydrogens in the I- and 3-positions). [Pg.38]


See other pages where Hydrogen statistics is mentioned: [Pg.593]    [Pg.799]    [Pg.578]    [Pg.702]    [Pg.85]    [Pg.175]    [Pg.15]    [Pg.176]    [Pg.66]    [Pg.370]    [Pg.141]    [Pg.158]    [Pg.411]    [Pg.344]    [Pg.144]    [Pg.286]    [Pg.298]    [Pg.427]    [Pg.348]    [Pg.355]    [Pg.361]    [Pg.172]    [Pg.12]    [Pg.35]    [Pg.60]    [Pg.221]    [Pg.230]    [Pg.161]    [Pg.76]    [Pg.78]    [Pg.274]    [Pg.31]    [Pg.41]    [Pg.364]   
See also in sourсe #XX -- [ Pg.26 , Pg.104 ]




SEARCH



Hydrogen bond statistical description

Hydrogen bonds statistical mechanical approach

The Hydrogen Bond Can Be Described Statistically

© 2024 chempedia.info