Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Structure and hybridization

Compare the hybridization and structure of carbon in diamond and graphite. How do these features explain the physical properties of the two allotropes ... [Pg.740]

DNA and RNA quantification, SNP typing, hybridization, and structural alteration have been widely carried out by modified oligonucleotides possessing pyrene derivatives [104-113]. As is known, pyrene-1-carboxaldehyde fluorescence is considerably dependent on solvent polarity [114], being strong in methanol but insignificant in nonpolar solvents [115]. Owing to this property, Tanaka and collaborators developed a pyrenecarboxamide-tethered modified DNA base, PyU 46, and applied it to SNP discrimination in DNA [116-120],... [Pg.42]

Since the hybridization and structure of the nitrile group resemble those of alkynes, titanium carbene complexes react with nitriles in a similar fashion. Titanocene-methylidene generated from titanacyclobutane or dimethyltitanocene reacts with two equivalents of a nitrile to form a 1,3-diazatitanacyclohexadiene 81. Hydrolysis of 81 affords p-ketoena-mines 82 or 4-amino-l-azadienes 83 (Scheme 14.35) [65,78]. The formation of the azati-tanacyclobutene by the reaction of methylidene/zinc halide complex with benzonitrile has also been studied [44]. [Pg.495]

Oxidation proceeds in four discrete stages of 0 , 0, sp-orbit hybridization, and structural relaxation. [Pg.191]

The modeling of amorphous solids is a more dilhcult problem. This is because there is no rigorous way to determine the structure of an amorphous compound or even dehne when it has been found. There are algorithms for building up a structure that has various hybridizations and size rings according to some statistical distribution. Such calculations cannot be made more efficient by the use of symmetry. [Pg.319]

One more hybridization scheme is important m organic chemistry It is called sp hybridization and applies when carbon is directly bonded to two atoms as m acetylene The structure of acetylene is shown m Figure 2 18 along with its bond distances and bond angles Its most prominent feature is its linear geometry... [Pg.92]

Section 2 22 Lewis structures orbital hybridization and molecular orbital descriptions of bonding are all used m organic chemistry Lewis structures are used the most MO descriptions the least All will be used m this text... [Pg.99]

The structure of ethylene and the orbital hybridization model for its double bond were presented m Section 2 20 and are briefly reviewed m Figure 5 1 Ethylene is planar each carbon is sp hybridized and the double bond is considered to have a a component and a TT component The ct component arises from overlap of sp hybrid orbitals along a line connecting the two carbons the tt component via a side by side overlap of two p orbitals Regions of high electron density attributed to the tt electrons appear above and below the plane of the molecule and are clearly evident m the electrostatic potential map Most of the reactions of ethylene and other alkenes involve these electrons... [Pg.190]

Up to this point in our discussion, we have considered only carbocations in which the cationic carbon can be 5p -hybridized and planar. When this hybridization cannot be achieved, die carbocations are of higher energy. In a classic experiment, Bartlett and Knox demonstrated that the tertiary chloride 1-chloroapocamphane was inert to nucleophilic substitution. Starting material was recovered unchanged even after refluxing for 48 h in ethanolic silver nitrate. The umeactivity of this compound is attributed to the structure of... [Pg.287]

Resonance forms differ only in the placement of their tt or nonbonding electrons. Neither the position nor the hybridization of any atom changes from one resonance form to another. In the acetate ion, for example, the carbon atom is sp2-hybridized and the oxygen atoms remain in exactly the same place in both resonance forms. Only the positions of the r electrons in the C=0 bond and the lone-pair electrons on oxygen differ from one form to another. This movement of electrons from one resonance structure to another can be indicated by using curved arrows. A curved arrow always indicates the movement of electrons, not the movement of atoms. An arrow shows that a pair of electrons moves from the atom or bond at the tail of the arrow to the atom or bond at the head of the arrow. [Pg.44]

Figure 6.9 The structure of a carbocation. The trivalent carbon is sp -hybridized and has a vacant p orbital perpendicular to the plane of the carbon and three attached groups. Figure 6.9 The structure of a carbocation. The trivalent carbon is sp -hybridized and has a vacant p orbital perpendicular to the plane of the carbon and three attached groups.
Figure 8.2 The structure of a secondary vinylic carbocation. The cationic carbon atom is sp-hybridized and has a vacant p orbital perpendicular to the plane of the tt bond orbitals. Only one R group is attached to the positively charged carbon rather than two, as in a secondary alkyl carbocation. The electrostatic potential map shows that the most positive (blue) regions coincide with lobes of the vacant p orbital and are perpendicular to the most negative (red) regions associated with the ir bond. Figure 8.2 The structure of a secondary vinylic carbocation. The cationic carbon atom is sp-hybridized and has a vacant p orbital perpendicular to the plane of the tt bond orbitals. Only one R group is attached to the positively charged carbon rather than two, as in a secondary alkyl carbocation. The electrostatic potential map shows that the most positive (blue) regions coincide with lobes of the vacant p orbital and are perpendicular to the most negative (red) regions associated with the ir bond.
In this case, the ionic structures make only a small contribution to the resonance hybrid, and we regard the hond as almost purely covalent. Moreover, the two ionic structures have the same energy and make equal contributions to the hybrid so the average charge on each atom is zero. However, in a molecule composed of different elements, such as HC1, the resonance... [Pg.201]

FIGURE 14.30 Structure of diamond. Each carbon atom is sp hybridized and forms tetrahedral rr-bonds to four neighbors. This pattern is repeated throughout the crystal and accounts for diamond s great hardness. [Pg.726]

In diamond, carbon is sp hybridized and forms a tetrahedral, three-dimensional network structure, which is extremely rigid. Graphite carbon is sp2 hybridized and planar. Its application as a lubricant results from the fact that the two-dimensional sheets can slide across one another, thereby reducing friction. In graphite, the unhybridized p-electrons are free to move from one carbon atom to another, which results in its high electrical conductivity. In diamond, all electrons are localized in sp3 hybridized C—C cr-bonds, so diamond is a poor conductor of electricity. [Pg.1011]

When the ortho-para directing group is one with an unshared pair (this of course applies to most of them), there is another effect that increases the amount of para product at the expense of the ortho. A comparison of the intermediates involved (p. 683) shows that C is a canonical form with an ortho-quinoid structure, while D has a para-quinoid structure. Since we know that para-quinones are more stable than the ortho isomers, it seems reasonable to assume that D is more stable than C, and therefore contributes more to the hybrid and increases its stability compared to the ortho intermediate. [Pg.686]

Hybrid Molecular Structure with Peptide and Nonpeptide Sequences. 124... [Pg.101]

Inspection of the second resonance structure reveals that this nitrogen atom is actually sp hybridized, not sp. It might look like it is sp hybridized in the first resonance structure, but it isn t. Here is the general rule a lone pair that participates in resonance must occupy ap orbital. In other words, the nitrogen atom in the compound above is sp hybridized. And as a result, this nitrogen atom is trigonal planar rather than trigonal pyramidal. [Pg.82]


See other pages where Structure and hybridization is mentioned: [Pg.63]    [Pg.93]    [Pg.309]    [Pg.799]    [Pg.7322]    [Pg.915]    [Pg.2]    [Pg.63]    [Pg.93]    [Pg.309]    [Pg.799]    [Pg.7322]    [Pg.915]    [Pg.2]    [Pg.151]    [Pg.117]    [Pg.3]    [Pg.6]    [Pg.7]    [Pg.917]    [Pg.270]    [Pg.108]    [Pg.560]    [Pg.183]    [Pg.808]    [Pg.528]    [Pg.214]    [Pg.236]    [Pg.1012]    [Pg.329]    [Pg.124]    [Pg.166]   
See also in sourсe #XX -- [ Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 , Pg.228 , Pg.229 , Pg.230 ]

See also in sourсe #XX -- [ Pg.220 , Pg.221 , Pg.222 , Pg.223 , Pg.224 , Pg.225 , Pg.226 , Pg.227 , Pg.228 , Pg.229 , Pg.230 ]




SEARCH



Hybrid structure

Structural hybrids

© 2024 chempedia.info