Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homogeneous reactions decay chains

A new numerical solver RF-RTM for the reactive transport in fractured porous media was investigated. The simulator RF-RTM is a three-dimensional model, that can consider several nonequilibrium kinetic type models. This paper illustrates the accuracy with the finite element model for simulating decay reactions in fractured porous media. The presented results show the capability of RF-RTM to simulate transport of one or more species. The finite element model RF-RTM was verified for several situations when sorption occurs imder equilibrium conditions such as in Example 1 and 5, or in case of matrix diffusion such as in Example 4. Validation of the nonequilibrium model was shown in Example 3. The nonequilibrium model is verified only for homogenous media. Numerical modelling of the decay chain reactions in fractured porous media with a nonequilibrimn sorption model is treated for the first time. Especially the different penetrations of decay chain components in a fiacture-matrix system was illustrated through a series of simulations (see Example 6). Further research is needed to quantify the effect of nonlinear sorption in the migration of the contaminants with sequentially deca3ong processes in fractured porous media. [Pg.113]

The paper of 1939 [1 ], On the Chain Decay of the Main Uranium Isotope, studies the effects of elastic and non-elastic neutron moderation and concludes that chain fission reactions by fast neutrons in pure metallic natural uranium are impossible. The 1940 paper, On the Chain Decay of Uranium under the Influence of Slow Neutrons [2 ], is classic in the best sense of this word its value is difficult to overestimate. The theoretical study performed showed clearly that the effect of resonance absorption of neutrons by nuclei of 238U is a governing factor in the calculation of the coefficient of neutron breeding in an unbounded medium it was concluded that a self-sustained chain reaction in a homogeneous natural uranium-light water system is impossible. [Pg.31]

Unfortunately, later the development of two areas— homogeneous kinetics and heterogeneous catalysis—occurred almost independently, which caused serious intrinsic discrepancies. For instance, the traditional chain theory implies the participation of surfaces also in chain termination, which determines the existence of the low-pressure ignition limit. In the framework of this approach, two regimes—diffusional and kinetic—are distinguished. In the latter case the parameter that describes the process is the probability of surface decay of chain carriers per one collision. It is worth noticing, however, that this assumes only a disappearance of active species from the gas phase, without any analysis of its mechanism and even stoichiometry. This is why the heterogeneous termination reactions are usually represented in kinetic models as a formal reaction ... [Pg.180]


See other pages where Homogeneous reactions decay chains is mentioned: [Pg.114]    [Pg.253]    [Pg.150]    [Pg.247]    [Pg.297]    [Pg.225]    [Pg.301]    [Pg.78]    [Pg.189]    [Pg.297]   
See also in sourсe #XX -- [ Pg.131 , Pg.132 , Pg.133 , Pg.134 , Pg.135 , Pg.136 , Pg.137 , Pg.138 , Pg.139 , Pg.140 , Pg.141 , Pg.142 , Pg.143 , Pg.456 , Pg.457 , Pg.458 , Pg.459 , Pg.460 ]




SEARCH



Decay chains

Decay reactions

Homogeneous reactions

Homogenous reactions

Reaction homogeneous reactions

© 2024 chempedia.info