Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Histone core particles

The rotational dynamics of nucleosomes containing (146 2)-bpDNA bound to core particles was studied by FPA(21,59 ° 235-1 of intercalated ethidium and by TPD(62) of intercalated Methylene Blue. These studies yield strong evidence that DNA wrapped around the histone core particle exhibits... [Pg.211]

Ward, R., Bowman, A., El-Mkami, H., Owen-Hughes, T., and Norman, D. G. (2009). Long distance PELDOR measurements on the histone core particle. J. Am. Chem. Soc. 131, 1348-1349. [Pg.352]

SADP or sulfo-SADP also have been used to study the phenylalanine-methionine-arginine-phenylalanine-amide-activated sodium channel (Coscoy et al., 1998), various apolipoprotein E isoforms (Mann et al., 1995), the high-affinity phenylalkylamine Ca2+ antagonist binding protein from guinea pig (Moebius et al., 1994), the interaction of non-histone proteins with nucleosome core particles (Reeves and Nissen, 1993), and the interactions among cytochromes P-450 in the endoplasmic reticulum (Alston et al., 1991). See Chapter 28 for methods of using photoreactive heterobifunctional crosslinkers to study protein interactions. [Pg.316]

The fluorescence of purified histones has been studied by several different groups, 90 95) with the most detailed studies being on calf thymus histone HI. Histone HI, which binds to the outside of core particles, contains one tyrosine and no tryptophan. This protein exhibits a substantial increase in fluorescence intensity in going from a denatured to a folded state.<90) Collisional quenching studies indicate that the tyrosine of the folded HI is in a buried environ-ment.(91) Libertini and Small(94) have identified three emissions from this residue when in the unfolded state with peaks near 300, 340, and 400 nm. The 340-nm peak was ascribed to tyrosinate (vide infra), and several possibilities were considered for the 400-nm component, including room temperature phosphorescence, emission of a charge transfer complex, or dityrosine. Dityrosine has the appropriate spectral characteristics, but would require... [Pg.23]

The nucleosome is composed of 200 base pairs of DNA and an octamer of the histones H2A, H2B, H3, and H4 as well as histone HI (Komberg, 1974, 1977). Nucleosomes can be obtained by mild digestion of chromatin with micrococcal nuclease (Noll, 1974a Axel, 1975), followed by fractionation on a sucrose gradient. Further digestion of the nucleosomes results in the formation of nucleosome core particles composed of 145 base pairs of DNA and an octamer of the histones H2A, H2B, H3, and H4 (Rill and Van Holde, 1973 Sollner-Webb and Felsenfeld, 1975 Axel, 1975 Bakayev et al., 1975 Whitlock and Simpson, 1976 Noll and Komberg, 1977). The DNA piece thus excised is called linker DNA which serves as a link... [Pg.3]

Recently, a low-resolution model of the chromatin core particle has been derived from a combination of single-crystal X-ray diffraction and electron microscopic data (Finch et al., 1977). The particle is described as a flat cylinder 110 A in diameter and 57 A in height. A similar shape and similar dimensions were found to be consistent with the low-angle neutron scattering from core particles in solution (Pardon et al., 1977 Suau et al., 1977). Some conclusions may be drawn concerning the conformation of the DNA. Presumably, the strong 28 A periodicity apparent in the crystal data (Finch et al., 1977) corresponds to the pitch of the DNA superhelix wound about the histone core. X-Ray and spectroscopic data suggest that the DNA super-... [Pg.4]

The histone octamer of nucleosome core particles was cross-linked by dimethylsuberimidate and isolated from the DNA by precipitation in 3 M NaCl (0.05 M sodium phosphate buffer, pH 7.0). The cross-linked octamer, dissolved at low ionic strength, was reconstituted by mixing with DNA at 1.0 M NaCl (pH 8.0 Tris buffer) and dialyzed against 0.6 M NaCl in the same buffer. The reconstituted particle had properties similar to those of the cross-linked core particle. It sedi-... [Pg.14]

Similar results were obtained from reconstitution experiments with DNA and a non-cross-linked octamer (Thomas and Butler, 1978). Nucleosome-like particles were observed in the EM and a pattern of histone cross-linking comparable to that of native chromatin was obtained. However, only 140-base-pair repeats were obtained upon micrococcal nuclease digestion instead of 200-base-pair repeats obtained for native rat liver chromatin (Noll and Komberg, 1977). This indicates that, in the absence of HI, only core particles can be reconstituted. Nevertheless, these studies with both cross-linked and reassembled un-cross-linked histones demonstrate that the octamer is a complete biological functional unit retaining the information for folding the DNA around the histone core. [Pg.15]

In experiments performed with chromatin or core particles depleted of histones except for H3 and H4 (Stockley and Thomas, 1979), two complexes were obtained, one containing an octamer and one a tetramer of H3 and H4 per 140 base pairs of DNA. The physical properties of the two core complexes were similar to those observed by... [Pg.30]

The inverse of the above experiments gave similar results (Whitlock and Stein, 1978). Trypsin-digested histones removed from HeLa core particles can subsequently fold DNA, although DNase I digests the resulting particles more rapidly than the untreated ones. Parallel experiments were performed for chicken erythrocyte core particles (Lilley and Tatchell, 1977). In all cases it could be concluded that it is the trypsin-insensitive carboxy-terminal regions of the histones which are responsible for the folding of the DNA in the nucleosome. [Pg.31]

Fig. 5. Schematic model of the nucleosome, with histone HI shown as stabilizing the fold of the DNA molecule around the core histones [based on results of Sperling and Sperling (1978)]. The nucleosome dimensions are derived from X-ray (Finch et al., 1977) and neutron (Baldwin et al., 1975 Pardon et al., 1977 Suauet al., 1977) scattering experiments. The histone core dimensions are derived from electron microscopic and X-ray studies (Sperling and Amos, 1977 Wachtel and Sperling, 1979 Sperling and Wachtel, 1979). The regions of the DNA molecule indicated by dashed lines indicate those base pairs which are not present in nucleosome core particles. Fig. 5. Schematic model of the nucleosome, with histone HI shown as stabilizing the fold of the DNA molecule around the core histones [based on results of Sperling and Sperling (1978)]. The nucleosome dimensions are derived from X-ray (Finch et al., 1977) and neutron (Baldwin et al., 1975 Pardon et al., 1977 Suauet al., 1977) scattering experiments. The histone core dimensions are derived from electron microscopic and X-ray studies (Sperling and Amos, 1977 Wachtel and Sperling, 1979 Sperling and Wachtel, 1979). The regions of the DNA molecule indicated by dashed lines indicate those base pairs which are not present in nucleosome core particles.
A low-energy in vitro form of nucleosome packing was observed in nucleosome core particle crystals (Finch et al., 1977). Two variants of these crystals occurred, (a) Wavy columns of nucleosomes stacked one on top of each other with an axial repeat of 340 A were obtained upon crystallization of nucleosomes containing proteolytically cleaved histones (Finch et al., 1977). (b) Straight columns of closely packed nucleosomes, 110 A in diameter, were obtained upon crystallization of nucleosomes with intact histones (Finch and Klug, 1978). In both these structures histone-histone contacts between nucleosomes are implied. Similar face-to-face packing of nucleosomes in arcs and helical patterns was observed in the EM by Dubochet and Noll (1978). [Pg.38]

Sperling and Wachtel, 1979) containing a tetramer of histones and 1.75 turns of smoothly bent DNA (Finch et al., 1977). The superposition illustrates how an H3-H4 double-stranded fiber could form the core of the H3-H4 subnucleosomal particle as well as serving as the arginine-rich kernel of the histone core of closely packed nucleo-... [Pg.41]

Simon RH, Eelsenfeld G (1979) A new procedure for purifying histone pairs H2A + H2B and H3 + H4 from chromatin using hydroxylapatite. Nucleic Acids Res 6 689-696 Simpson RT (1978) Structure of the chromatosome, a chromatin particle containing 160 base pairs of DNA and all the histones. Biochemistry 17 5524-5531 Simpson RT, Stafford DW (1983) Structural features of a phased nucleosome core particle. Proc Natl Acad Sci U S A 80 51-55... [Pg.28]

Luger K, Mader, AW., Richmond RK, Sargent DF, Richmond TJ (1997) Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 389 251-260 Ma Y, Jacobs SB, Jackson-Grusby L, Mastrangelo MA, Torres-Betancourt JA, Jaenisch R, Rasmussen TP (2005) DNA CpG hypomethylation induces heterochromatin reorganization involving the histone variant macroH2A. J Cell Sci 118 1607-1616... [Pg.87]

Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403 41-45 Suto RK, Clarkson MJ, Tremethick DJ, Luger K (2000) Crystal structure of a nucleosome core particle containing the variant histone H2A.Z. Nature Struct. Biol. 7 1121-1124 Swaminathan J, Baxter EM, Corces VG (2005) The role of histone H2Av variant replacement and histone H4 acetylation in the establishment of Drosophila heterochromatin. Genes Dev 19 65-76... [Pg.88]

The genetic information of eukaryotic cells is propagated in the form of chromosomal DNA. Besides the nucleic acid component, chromosomes contain architectural proteins as stoichiometric components, which are involved in the protective compaction of the fragile DNA double strands. Together, the DNA and proteins form a nucleoprotein structure called chromatin. The fundamental repeating unit of chromatin is the nucleosome core particle. It consists of about 147 base pairs of DNA wrapped around a histone octamer of a (H3/H4)2 tetramer and two (H2A-H2B) heterodimers. One molecule of the linker histone HI (or H5) binds the linker DNA region between two nucleosome core particles (Bates and Thomas 1981). [Pg.91]

Nucleosomes core particles containing H2A only have 118 base pairs of DNA incorporated compared to the canonical nucleosomes protecting about 147 base pairs from micrococcal nuclease (Bao et al. 2004). These nucleosomes are more flexible in structure and might facilitate passage of RNA polymerase II. However, the function of this histone variant in mammalian cells is not fully understood. As... [Pg.102]

The genome of the eukaryotic cell is packaged in a topologically complex, fibrous superstructure known as chromatin. The nucleosome core particle is the fundamental building block of chromatin and contains 146 bp of DNA wrapped in roughly two super helical turns around an octamer of four core histones (H3, H2B, H2A and H4) resulting in a beads on a string structure. This 10 nm structure further folds and... [Pg.111]

Chopped core particle means nucleosome core particle with the N-terminal tails of core histones removed by tryptic digestion. [Pg.158]


See other pages where Histone core particles is mentioned: [Pg.263]    [Pg.263]    [Pg.380]    [Pg.143]    [Pg.315]    [Pg.109]    [Pg.109]    [Pg.183]    [Pg.45]    [Pg.23]    [Pg.5]    [Pg.8]    [Pg.23]    [Pg.24]    [Pg.27]    [Pg.28]    [Pg.28]    [Pg.31]    [Pg.32]    [Pg.37]    [Pg.43]    [Pg.15]    [Pg.72]    [Pg.73]    [Pg.97]    [Pg.110]    [Pg.115]    [Pg.147]    [Pg.148]    [Pg.157]   


SEARCH



Core histones

Histone

© 2024 chempedia.info