Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Histidine essentiality

Chemical modifications of proteins (enzymes) by reacting them with iV-acylimidazoles are a way of studying active sites. By this means the amino acid residues (e.g., tyrosine, lysine, histidine) essential for catalytic activity are established on the basis of acylation with the azolides and deacylation with other appropriate reagents (e.g., hydroxylamine). [Pg.166]

See also Table 5.1, Genetic Code, Metabolism of Aromatic Amino Acids and Histidine, Essential... [Pg.92]

Valine, leucine, isoleucine, phenylalanine, tryptophan, methionine, threonine, histidine (essential for infants), lysine and arginine ( semi-essential ). [Pg.9]

Histidine Essential fatty acids Omega 6 (a)6 or n-6) 28 1-4 % of total calories 8-12 Absolutely required. Enter cell membranes and affect many biochemical processes. The C20 acids are also converted to eicosanoids, signaling molecules that include prostaglandins and leukotrienes. Essential fatty acids protect against cardiovascular disease, disease, inflammation, and autoimmune reactions. [Pg.209]

CfiHqNaO . M.p. 277 C. The naturally occurring substance is laevorotatory. Histidine is one of the basic amino-acids occurring in the hydrolysis products of proteins, and particularly of the basic proteins, the protamines and histones. It is an essential constituent of the food of animals. [Pg.205]

The shape of a large protein is influenced by many factors including of course Its primary and secondary structure The disulfide bond shown m Figure 27 18 links Cys 138 of carboxypeptidase A to Cys 161 and contributes to the tertiary structure Car boxypeptidase A contains a Zn " ion which is essential to the catalytic activity of the enzyme and its presence influences the tertiary structure The Zn ion lies near the cen ter of the enzyme where it is coordinated to the imidazole nitrogens of two histidine residues (His 69 His 196) and to the carboxylate side chain of Glu 72... [Pg.1146]

FIGURE 14.11 The pH activity profiles of four different enzymes. Trypsin, an intestinal protease, has a slightly alkaline pH optimnm, whereas pepsin, a gastric protease, acts in the acidic confines of the stomach and has a pH optimmn near 2. Papain, a protease found in papaya, is relatively insensitive to pHs between 4 and 8. Cholinesterase activity is pH-sensitive below pH 7 but not between pH 7 and 10. The cholinesterase pH activity profile suggests that an ionizable group with a pK near 6 is essential to its activity. Might it be a histidine residue within the active site ... [Pg.442]

Early mutational studies of the Rieske protein from 6ci complexes have been performed with the intention of identifying the ligands of the Rieske cluster. These studies have shown that the four conserved cysteine residues as well as the two conserved histidine residues are essential for the insertion of the [2Fe-2S] cluster (44, 45). Small amounts of a Rieske cluster with altered properties were obtained in Rhodobacter capsulatus when the second cysteine in the cluster binding loop II (Cys 155, corresponding to Cys 160 in the bovine ISF) was replaced by serine (45). The fact that all four cysteine residues are essential in Rieske clusters from be complexes, but that only two cysteines are conserved in Rieske-type clusters, led to the suggestion that the Rieske protein may contain a disulfide bridge the disulfide bridge was finally shown to exist in the X-ray structure (9). [Pg.109]

Heme, an essentially planar, slightly puckered, cyclic tetrapyrrole, has a central Fcj" linked to all four nitrogen atoms of the heme, to histidine F8, and, in oxyMb and oxyHb, also to O2. [Pg.47]

Not all proteins are nutritionally equivalent. Mote of some than of others is needed to maintain nittogen balance because different proteins contain different amounts of the various amino acids. The body s requirement is for specific amino acids in the correct proportions to replace the body proteins. The amino acids can be divided into two groups essential and nonessential. There are nine essential or indispensable amino acids, which cannot be synthesized in the body histidine, isoleucine, leucine, lysine, methionine, phenylalanine, threonine, tryptophan, and valine. If one of these is lacking or inadequate, then—regardless of the total intake of protein—it will not be possible to maintain nitrogen balance since there will not be enough of that amino acid for protein synthesis. [Pg.480]

There is only one tyrosine residue in some sea snake neurotoxins. This residue is usually quite difficult to modify, but once it is modified, the toxicity is lost (9). Histidine seems not to be essential as the chemical modification of this residue does not affect the toxicity 10). [Pg.339]

The outstanding inclusion ability and the carboxylic functions of host I raised the idea of co-erystallizing it with imidazole (Im) which, due to its versatile nature 114), is one of the frequently used components in enzyme active sites, generally presented by histidine. Formally, a system made of imidazole and an acid component may mimic two essential components of the so-called catalytic triad of the serine protease family of enzymes the acid function of Aspl02 and the imidazole nucleus of His57 115) (trypsin sequence numbering). The third (albeit essential) component of the triad corresponding to the alcohol function of Seri 95 was not considered in this attempt. This family of enzymes is of prime importance in metabolitic processes. [Pg.128]

There are two distinct pools of HA in the brain (1) the neuronal pool and (2) the non-neuronal pool, mainly contributed by the mast cells. The turnover of HA in mast cells is slower than in neurons it is believed that the HA contribution from the mast cells is limited and that almost all brain histaminergic actions are the result of HA released by neurons (Haas Panula, 2003). The blood-brain barrier is impermeable to HA. HA in the brain is formed from L-histidine, an essential amino acid. HA synthesis occurs in two steps (1) neuronal uptake of L-histidine by L-amino acid transporters and (2) subsequent decarboxylation of l-histidine by a specific enzyme, L-histidine decarboxylase (E.C. 4.1.1.22). It appears that the availability of L-histidine is the rate-limiting step for the synthesis of HA. The enzyme HDC is selective for L-histidine and its activity displays circadian fluctuations (Orr Quay, 1975). HA synthesis can be reduced by inhibition of the enzyme HDC. a-Fluoromethylhistidine (a-FMH) is an irreversible and a highly selective inhibitor of HDC a single systemic injection of a-FMH (10-50 mg/kg) can produce up to 90% inhibition of HDC activity within 60-120 min (Monti, 1993). Once synthesized, HA is taken up into vesicles by the vesicular monoamine transporter and is stored until released. [Pg.146]


See other pages where Histidine essentiality is mentioned: [Pg.271]    [Pg.282]    [Pg.47]    [Pg.11]    [Pg.176]    [Pg.181]    [Pg.217]    [Pg.218]    [Pg.246]    [Pg.50]    [Pg.664]    [Pg.517]    [Pg.877]    [Pg.204]    [Pg.196]    [Pg.112]    [Pg.147]    [Pg.201]    [Pg.203]    [Pg.1484]    [Pg.103]    [Pg.822]    [Pg.44]    [Pg.221]    [Pg.115]    [Pg.117]    [Pg.30]    [Pg.421]    [Pg.37]    [Pg.187]    [Pg.208]    [Pg.26]    [Pg.32]    [Pg.169]    [Pg.122]   
See also in sourсe #XX -- [ Pg.285 ]




SEARCH



© 2024 chempedia.info