Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hirshfeld formalism

Not surprisingly, formalisms with very diffuse density functions tend to yield large electrostatic moments. This appears, in particular, to be true for the Hirshfeld formalism, in which each cos 1 term in the expansion (3.48) includes diffuse spherical harmonic functions with / = n, n — 2, n — 4,... (0, 1) with the radial factor rn. For instance when the refinement includes cos4 terms, monopoles and quadrupoles with radial functions containing a factor r4 are present. For pyridin-ium dicyanomethylide (Fig. 7.3), the dipole moment obtained with the coefficients from the Hirshfeld-type refinement is 62.7-10" 30 Cm (18.8 D), whereas the dipole moments from the spherical harmonic refinement, from integration in direct space, and the solution value (in dioxane), all cluster around 31 10 30 Cm (9.4 D) (Baert et al. 1982). [Pg.160]

The aspherical density formalism of Hirshfeld is a deformation model with angular functions which are a sum over spherical harmonics. It will be described in more detail in section 3.2.6. All three models have been applied extensively in charge density studies (for a comparison, see Lecomte 1991). [Pg.67]

Hirshfeld (1971) was among the first to introduce atom-centered deformation density functions into the least squares procedure. Hirshfeld s formalism is a deformation model, in which the leading term is the unperturbed IAM density, and the deformation functions are of the form cos" 0jk, where 9jk is the angle between the radius vector r7 and axis k of a set of (n + l)(n + 2)/2 polar axes on each atom /, as defined in Table 3.8 (Hirshfeld 1977). The atomic deformation on atom j is described as... [Pg.70]

The Hirshfeld functions give an excellent fit to the density, as illustrated for tetrafluoroterephthalonitrile in chapter 5 (see Fig. 5.12). But, because they are less localized than the spherical harmonic functions, net atomic charges are less well defined. A comparison of the two formalisms has been made in the refinement of pyridinium dicyanomethylide (Baert et al. 1982). While both models fit the data equally well, the Hirshfeld model leads to a much larger value of the molecular dipole moment obtained by summation over the atomic functions using the equations described in chapter 7. The multipole results appear in better agreement with other experimental and theoretical values, which suggests that the latter are preferable when electrostatic properties are to be evaluated directly from the least-squares results. When the evaluation is based on the density predicted by the model, both formalisms should perform well. [Pg.71]


See other pages where Hirshfeld formalism is mentioned: [Pg.70]    [Pg.71]    [Pg.70]    [Pg.71]    [Pg.62]    [Pg.217]    [Pg.141]   
See also in sourсe #XX -- [ Pg.67 , Pg.70 , Pg.160 ]




SEARCH



Hirshfeld

© 2024 chempedia.info