Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hinderer

At lower temperatures, the crystals increase in size, and form networks that trap the liquid and hinder its ability to flow. The pour point is attained which can, depending on the diesel fuel, vary between -15 and -30°C. This characteristic (NF T 60-105) is determined, like the cloud point, with a very rudimentary device (maintaining a test tube in the horizontal position without apparent movement of the diesel fuel inside). [Pg.215]

A crack in concrete with an air gap thickness of as little as 0.025 mm will hinder significant transmission of seismic compression waves [1]. [Pg.1002]

Molecules larger than those considered so far are fonned by linking together several smaller components. A new kind of dynamics typical of these systems is already seen in a molecule such as C2Hg, in which there is hindered rotation of the two methyl groups. Systems with hindered internal rotation have been studied in great... [Pg.78]

Corrosion protection of metals can take many fonns, one of which is passivation. As mentioned above, passivation is the fonnation of a thin protective film (most commonly oxide or hydrated oxide) on a metallic surface. Certain metals that are prone to passivation will fonn a thin oxide film that displaces the electrode potential of the metal by +0.5-2.0 V. The film severely hinders the difflision rate of metal ions from the electrode to tire solid-gas or solid-liquid interface, thus providing corrosion resistance. This decreased corrosion rate is best illustrated by anodic polarization curves, which are constructed by measuring the net current from an electrode into solution (the corrosion current) under an applied voltage. For passivable metals, the current will increase steadily with increasing voltage in the so-called active region until the passivating film fonns, at which point the current will rapidly decrease. This behaviour is characteristic of metals that are susceptible to passivation. [Pg.923]

Variational RRKM theory is particularly important for imimolecular dissociation reactions, in which vibrational modes of the reactant molecule become translations and rotations in the products [22]. For CH —> CHg+H dissociation there are tlnee vibrational modes of this type, i.e. the C—H stretch which is the reaction coordinate and the two degenerate H—CH bends, which first transfomi from high-frequency to low-frequency vibrations and then hindered rotors as the H—C bond ruptures. These latter two degrees of freedom are called transitional modes [24,25]. C2Hg 2CH3 dissociation has five transitional modes, i.e. two pairs of degenerate CH rocking/rotational motions and the CH torsion. [Pg.1016]

Wagner A F, Kiefer J H and Kumaran S S 1992 The importance of hindered rotation and other... [Pg.1040]

Gutowsky H S and Holm C H 1956 Rate processes and nuclear magnetic resonance spectra. II. Hindered internal rotation of amides J. Chem. Phys. 25 1228-34... [Pg.2112]

Kiefer J H, Mudipalli P S, Wagner A F and Harding L 1996 Importance of hindered rotations in the thermal dissociation of small unsaturated molecules classical formulation and application to hen and hcch J. Chem. Phys. 105 1-22... [Pg.2151]

The quantum numbers tliat are appropriate to describe tire vibrational levels of a quasilinear complex such as Ar-HCl are tluis tire monomer vibrational quantum number v, an intennolecular stretching quantum number n and two quantum numbers j and K to describe tire hindered rotational motion. For more rigid complexes, it becomes appropriate to replace j and K witli nonnal-mode vibrational quantum numbers, tliough tliere is an awkw ard intennediate regime in which neitlier description is satisfactory see [3] for a discussion of tire transition between tire two cases. In addition, tliere is always a quantum number J for tire total angular momentum (excluding nuclear spin). The total parity (symmetry under space-fixed inversion of all coordinates) is also a conserved quantity tliat is spectroscopically important. [Pg.2445]

Ha T, Glass J, Enderle T, Chemla D S and Weiss S 1998 Hindered rotational diffusion and rotational ]umps of single molecules Phys. Rev. Lett. 80 2093-7... [Pg.2510]

The successful preparation of polymers is achieved only if tire macromolecules are stable. Polymers are often prepared in solution where entropy destabilizes large molecular assemblies. Therefore, monomers have to be strongly bonded togetlier. These links are best realized by covalent bonds. Moreover, reaction kinetics favourable to polymeric materials must be fast, so tliat high-molecular-weight materials can be produced in a reasonable time. The polymerization reaction must also be fast compared to side reactions tliat often hinder or preclude tire fonnation of the desired product. [Pg.2515]

The generally low chemical, mechanical and thennal stability of LB films hinders their use in a wide range of applications. Two approaches have been studied to solve this problem. One is to spread a polymerizable monomer on the subphase and to polymerize it either before or following transfer to the substrate. The second is to employ prefonned polymers containing hydrophilic and hydrophobic groups. [Pg.2618]

At finite concentration, tire settling rate is influenced by hydrodynamic interactions between tire particles. For purely repulsive particle interactions, settling is hindered. Attractive interactions encourage particles to settle as a group, which increases tire settling rate. For hard spheres, tire first-order correction to tire Stokes settling rate is given by [33]... [Pg.2673]

A different kind of shape selectivity is restricted transition state shape selectivity. It is related not to transport restrictions but instead to size restrictions of the catalyst pores, which hinder the fonnation of transition states that are too large to fit thus reactions proceeding tiirough smaller transition states are favoured. The catalytic activities for the cracking of hexanes to give smaller hydrocarbons, measured as first-order rate constants at 811 K and atmospheric pressure, were found to be the following for the reactions catalysed by crystallites of HZSM-5 14 n-... [Pg.2712]

To enable an atomic interpretation of the AFM experiments, we have developed a molecular dynamics technique to simulate these experiments [49], Prom such force simulations rupture models at atomic resolution were derived and checked by comparisons of the computed rupture forces with the experimental ones. In order to facilitate such checks, the simulations have been set up to resemble the AFM experiment in as many details as possible (Fig. 4, bottom) the protein-ligand complex was simulated in atomic detail starting from the crystal structure, water solvent was included within the simulation system to account for solvation effects, the protein was held in place by keeping its center of mass fixed (so that internal motions were not hindered), the cantilever was simulated by use of a harmonic spring potential and, finally, the simulated cantilever was connected to the particular atom of the ligand, to which in the AFM experiment the linker molecule was connected. [Pg.86]

The treatment of conjugated systems in terms of electron systems that extend smoothly over all atoms allows the treatment of a variety of structural phenomena, as may be explained with a spedes that shows hindered rotation and with the nitro group. [Pg.65]

Pyridine and quinoline are usually sold each in two grades, "technical" and "pure." The "technical" grade may contain various impurities which can hinder the identification of the base. [Pg.377]

If either R or R has a branched ciiain structure and is therefore bulky, it will exert a hindering influence (steric hindrance) in the formation of the bimole-cular complex (in 2) and esterification is accordingly more difficult. [Pg.380]

The electronic transitions which produce spectra in the visible and ultraviolet are accompanied by vibrational and rotational transitions. In the condensed state, however, rotation is hindered by solvent molecules, and stray electrical fields affect the vibrational frequencies. For these reasons, electronic bands are very broad. An electronic band is characterised by the wave length and moleculai extinction coefficient at the position of maximum intensity (Xma,. and emai.). [Pg.1143]


See other pages where Hinderer is mentioned: [Pg.22]    [Pg.338]    [Pg.228]    [Pg.654]    [Pg.997]    [Pg.310]    [Pg.79]    [Pg.940]    [Pg.1169]    [Pg.1687]    [Pg.1941]    [Pg.2417]    [Pg.2445]    [Pg.2498]    [Pg.2527]    [Pg.2529]    [Pg.2712]    [Pg.2784]    [Pg.2814]    [Pg.2840]    [Pg.310]    [Pg.52]    [Pg.65]    [Pg.130]    [Pg.878]    [Pg.1149]    [Pg.20]    [Pg.40]    [Pg.44]    [Pg.46]    [Pg.51]   
See also in sourсe #XX -- [ Pg.287 ]




SEARCH



Hindered

© 2024 chempedia.info